@

@
@

Europidisches Patentamt
0 European Patent Office
Office européen des brevets

EUROPEAN PATENT APPLICATION

Application number ;: 95100777.2
Date of filing : 20.01.95

@) Int. 1.5 GOBF 9/44

(@9 Publication number : 0 664 ’51 0 AZ

@

Priority : 24.01.94 US 185465

Date of publication of appilication ;
26.07.95 Bulletin 95/30

Designated Contracting States :
DE FR GB

Applicant : MICROSOFT CORPORATION
One Microsoft Way
Redmond, Washington 98052-6399 (US)

Inventor : Leach, Paul

1134 Federal Avenue

Seattle, Washington 98102 (US)
Inventor : Willlams, Antony S.
22542 N.E. 46th Street

Redmond, Washington 98053 (US)

Inventor : Jung, Edward

1829 North 177th Street

Seattle, Washington 98133 (US)
Inventor . Hodges, Dauglas C.
23018 N.E. 13th Street
Redmond, Washinton 98053 (US)
Inventor : Koppolu, Srinivasa R.
2402-236th Avenue N.E.

“Redmond, Washington 98053 (US)

Inventor : Mackichan, Barry B. -
12730 Manzanita Road N.E.

Bainbridge Island, Washington 98110 (US)

Inventor : Wittenberg, Cralg
7525 Mercer Terrace Drive
Mercer Island, Washington 98040 (US)

Representative : Patentanwiilte Griinecker,

Kinkeldey, Stockmair & Partner
Maximilianstrasse 58
D-80538 Miinchen (DE)

EP 0 664 510 A2

)
&

Method and system for aggregating objects.

A method and system for aggregating objects
within a computer system are provided. In a
preferred embaodiment, the method aggregates
an enclosed object within an enclosing object.
The enclosed object has an object management
interface and an external interface, while the
enclosing object has a controlling object man-
agement interface. The controlling object man-
agement Interface and the external interface of
the endosed object have query function mem-
bers for receiving an identifier of an interface
and for returning a reference to the identified
interface. A preferred embodiment creates an
instance of an enclosing object and an object to
be enclosed. In static aggregation, the control-
ling object management interface of the enclos-
ing object knows in advance how to return an
identifier to the external interface of the en-
closed object. In dynamic aggregation, an
object to be enclosed is added ta the enclosing
object after the enclosing object Iis instantiated.
Once aggregated, when the query function
member of the object management interface of
the enclosed object receives an identifier of an
interface, it invokes the query function member
of the controlling object management interface
forwarding the interface identifier and returns
the reference to an interface returned by the
invoked query function member of the control-
ling object management interface. In dynamic
aggregation, rules for determining to which
interface to return a reference can by added to
the endosing object and used by the query
function member of the controlling abject man-
agement interface.

~Method 0

g g 8
- z
o
3 Voo
2 g
/j
- —
5§ it £
o L]
g,
fro=] see -
=+
=]
- E
> 7
g}
>
@ il
3
8 14
§2 248
B Qo
[=4
_l‘.:' =
]

Jouve, 18, rue Saint-Denis, 75001 PARIS

Fig. 1

10

18

20

25

30

35

&5

EP 0 664 510 A2

Cross-Reference to Related Application

This application is a continuation in partfor U.S. Patent Application Serial No. 07/996,552, entitled "A Meth-
od and System for Aggregating Objects,"” which was filed on December 24, 1992, and which is hereby incor-
porated by reference.

Technical Field

This invention relates generally to a computer method and system of implementing interfaces to objects
and, more specifically, to a method and system for aggregating objects. ’

Background of the Invention

As computer software systems increase in sophistication, the cost of developing the software increases.
To minimize the cost of software development, developers often share code. Prior development efforts use
three types of code sharing: (1) source code sharing, (2) compiled code sharing, and (3) code sharing through
inheritance.

Also, as computer software systems increase in sophistication, software users are faced with increasing
complexity in the maintenance and extensibility of their computer systems. Each time a software vendor gen-
erates new or improved capabilities, a user who wishes to benefit must somehow incorporate these modifica-
tions. Prior systems generally require such a user to upgrade the software, forcing the user to reinstall at least
part of the system. Or, prior systems require a software developer to plan in advance for future enhancements
and install the necessary hooks in the original system to enable the loading of enhancements at some future
time.

Morsover, if a user wishes to enhance the capabilities of a piece of currently owned software by adding
capabilities produced by a different software vendor, the user is limited by what the software vendors planned
in advance. Prior systems generally require that the two pieces of softwars be designed to work together and
that at least one of the software pieces have knowledge of what capabilities the other provides. Thus, in prior
systems, later modifications to code as well as the sharing of code must be accounted for in the software de-
sign.

Source and compiled code sharing have been widely used for many years. Source code sharing refers to
the use of the same source code by various computer programs or by various versions of the same computer
program. For example, a spreadsheet program typically includes source code to centrol the displaying of a
spreadsheet. If a word processing program allows the embedding of a spreadsheet within a document, then
the word processing program may use the same (or slightly modified) source code to display the embedded
spreadsheet object. Source code sharing is typically used by a single developer who develops multiple com-
puter programs. For competitive reasons, developers typically do not share their source code with other de-
velopars. Moreaver, even if the developer does share source code, the recipient of source code typicaily modi-
fies the source code and thus two versions of the source code are maintained.

Compiled code sharing refers to the use of the same compiled code by various computer programs. The
compiled code Is typically stored In a statlc or dynamlic link llbrary. Complled code stored In a static link llbrary
is shared when a computer program is linked before execution. Compiled code stored in a dynamic link library
is shared when a computer program is linked during execution. The developer of a spell checking program, for
example, may share compiled code by compiling the program and storing the compiled code in a static link
library. The static link library can then be distributed to developers of word processing programs who can link
the compiled spell checking code into their word processing program. The developer of the spell checking pro-
gram typically needs to modify the compiled code to meet special requirements of certain developers. These
modifications tend to increase the complexity (and size) of the compiled code and may conflict with require-
ments of other recipients. Alternatively, the developer could distribute multiple versions of the static link library.
However, the maintenance of muitiple versions can be costly.

Object-oriented programming techniques employ a concept referred to as inheritance to allow the sharing
of code. An overview of well-known object-oriented pregramming techniques is provided, since the presentin-
vention is described below using object-oriented programming. Two common characteristics of object-oriented
programming languages are support for data encapsulation and data type inheritance. Data encapsulation re-
fers to the binding of functions and data. Inheritance refers to the ability to declare a data type in terms of other
data types.

in the C++ language, object-oriented techniques are supported through the use of classes. Aclass is a
user-defined type. A class declaration describes the data members and function members of the class. For

2

10

18

20

25

30

35

&5

EP 0 664 510 A2

example, the following declaration defines data members and a function member of a class named CIRCLE.

class CIRCLE

{ public:
intx,y;
int radius;
void draw();

1

Variables x and y specify the center location of a circle and variable radius specifies the radius of the circle.
These variables are referred to as data members of the class CIRCLE. The function draw is a user-defined
function that draws the circle of the specified radius at the specified location. The function draw is referred to
as afunction member of class CIRCLE. The data members and function members of a class are bound together
in that the function operates on an instance of the class. An instance of a class is also called an object of the
class.
In the syntax of C++, the following statement declares the objects a and b to be of type class CIRCLE.

CIRCLE a, b;
This declaration causes the allocation of memory for the objects a and b. The following statements assign data
to the data members of objects a and b.

ax=2;

ay=2;

a.radius = 1;

b.x =4;

by =5;

b.radius = 2;
The following statements are used to draw the circles defined by objects a and b.

a.draw(); '

b.draw();

A darived class is a class that inherits the characteristics--data members and function members--of its

base classes. For example, the following derived class CIRCLE_FILL inherits the characteristics of the base
class CIRCLE. '

class CIRCLE FILL : CIRCLE
{ public:

int pattern;

void fill();
b

This declaration specifies that class CIRCLE_FILL includes all the data and function members that are in class
CIRCLE in addition to those data and function members introduced in the declaration of class CIRCLE_FILL,
that Is, data member pattern and function member fill. In this example, class CIRCLE_FILL has data members
x, y, radius, and pattern and function members draw and fill. Class CIRCLE_FILL is said ta "inherit" the char-
acteristics of class CIRCLE. A class that inherits the characteristics of another class is a derived dass (e.g.,
CIRCLE_FILL). A class that does not inherlt the characteristics of another class Is a primary (root) class (e.g.,
CIRCLE). A class whose characteristics are inharited by another class is a base class (e.g., CIRCLE is a base
class of CIRCLE_FILL). A derived class may inherit the characteristics of several classes, that is, a derived
class may have several base classes. This Is referred to as multiple inheritance.

Aderived class may specify that a base class is to be inherited virtually. Virtual inheritance of a base class
means that only one instance of the virtual base class exists in the derived class. For example, the following
is an example of a derived class with two nonvirtual base classes.

class CIRCLE_1: CIRCLE {...};

10

18

20

25

30

35

55

EP 0 664 510 A2

class CIRCLE_2: CIRCLE {...};
class PATTERN : CIRCLE_1, CIRCLE_2{...);
In this declaration class PATTERN inherits class CIRCLE twice nonvirtually through classes CIRCLE_1 and
CIRCLE_2. There are two instances of class CIRCLE in class PATTERN.
The following is an example of a derived class with two virtual base classes.
class CIRCLE_1 : virtual CIRCLE {...};
class CIRCLE_2 : virtual CIRCLE {...};
class PATTERN: CIRCLE_1, CIRCLE_2{...);
The derived class PATTERN inherits class CIRCLE twice virtually through classes CIRCLE_1 and CIRCLE_2.
Since the class CIRCLE is virtually inherited twice, there is only one object of class CIRCLE in the derived
class PATTERN. One skilled in the art would appreciate virtual inheritance can be very useful when the class
derivation is more complex.)
A class may also specify whether its function members are virtual. Declaring that a function member is
virtual means that the function can be overridden by a function of the same name and type in a derived class.
In the following example, the function draw is declared to be virtual in classes CIRCLE and CIRCLE_FILL.

class CIRCLE
{ public:
int x, y;
int radius;
virtual void draw();

oy

class CIRCLE_FILL : CIRCLE
{ public:

int pattern;

virtual void draw();
b

If a virtual function is declared without providing an implementation, then it is referred to as a pure virtual func-
tion. A pure virtual function is a virtual function declared with the pure specifier, "= 0". If a class specifies a
pure virtual function, then any derived class needs to specify an implementation for that function member be-
fore that function member may be invoked.

In order to access objects, the C++ language provides a pointer data type. A pointer holds values that are
addresses of objects in memory. Through a pointer, an object can be referenced. The following statement de-
clares variable ¢_ptr to be a painter on an object of type class CIRCLE and sets variable c_ptr to hold the ad-
dress of object c.

CIRCLE *c_ptr;

c_ptr= &c;
Continuing with the example, the following statement declares object a to be of type class CIRCLE and object
b to be of type class CIRCLE_FILL.

CIRCLE g;

CIRCLE_FILL b;
The following statement refers to the function draw as defined in class CIRCLE.

a.draw();
Whereas, the following statement refers to the function draw defined in class CIRCLE_FILL.

b.draw(};
Moreover, the following statements type cast object b to an object of type class CIRCLE and invoke the function
draw that is defined in class CIRCLE_FILL.

10

18

20

25

30

35

55

EP 0664 510 A2

CIRCLE *c_ptr;
c_ptr = &b;
¢_ptr->draw(); // CIRCLE_FILL::draw()

Thus, the virtual function that is called is function CIRCLE_FILL::draw.

Figure 1 is a block diagram illustrating typical data structures used to represent an object. An object is
composed of instance data (data members) and member functions, which implement the behavior of the object.
The data structures used to represent an object comprise instance data structure 101, virtual function table
102, and the function members 103, 104, 105. The instance data structure 101 contains a pointer to the virtual
function table 102 and contains data members. The virtual function table 102 contains an entry for each virtual
function member defined for the object. Each entry contains a reference to the code that implements the cor-
responding function member. The layout of this sample object conforms to the model defined in U.S. Patent
Application Serial No. 07/682,537, entitled "A Method for Implementing Virtual Functions and Virtual Bases in
a Compiler for an Object Oriented Programming Language.,” which is hereby incorporated by reference. In the
following, an object will be described as an instance of a class as defined by the C++ programming language.
One skilled in the art would appreciate that objects can be defined using other programming languages.

The inheritance of a class is a type of code sharing. Adeveloper of a class can provide the implementation
of the class to other developers. These other developers can then create classes that derive from the class
provided. Thus, the function members of the provided class are shared. If, however, a class is inherited and a
virtual function is overridden, then the testing of the overriding virtual function can be complex. The overriding
virtual function can modify the state of the object in a way that affects non-overridden functions. Thus, each
inherited function must be independently tested in conjunction with the testing of the overriding virtual function.
To ameliorate the complexities of testing, the developers of a class implementation may distribute source code
with the implementation. Unfortunately, the distribution of source code has the same drawbacks to sharing
source code as discussed above.

An advantage of using object-oriented techniques is that these techniques can be used to facilitate the
sharing of objects. In particular, object-oriented techniques facilitate the creation of compound documents. A
compound document is a document that contains objects generated by various computer programs. (Typically,
only the data members of the object and the class type are storad in a compound document.) For example, a
word processing document that contains a spreadsheset object generated by a spreadsheet program is a com-
pound document. A word processing program allows a user to embed a spreadsheet object (e.g., a cell) within
a word processing document. To allow this embedding, the word processing program is compiled using the
class definition of the object to be embedded to access function members of the embedded object. Thus, the
word processing program would need to be compiled using the class definition of each class of objects that
can be embedded in a word processing document. To embed an object of a new class into a word processing
dacument, the word processing program would need to be recompiled with the new class definition. Thus, only
objects of classes selected by the developer of the word processing program can be embedded. Furthermore,
new classes can only be supported with a new release of the word processing program.

To allow objects of an arbitrary class to be embedded into compound dacuments, interfaces are defined
through which an object can be accessed without the need for the word processing program to have access
to the class definitions at compile time. An abstract class is a class in which there is at least one virtual function
member with no implementation (a pure virtual function member). An interface is an abstract class with no
data members and whose virtual functions are all pure. Thus, an interface pravides a protacal for two programs
to communicate. Interfaces are typically used for derivation: a program implements classes that provide im-
plementations for the interfaces the classes are derived from. Thereafter, objects are created as instances of
these derived classes.

The following class definition is an example definltion of an interface. In this example, for simplicity of ex-
planation, rather than allowing any class of object to be embedded inits documents, a ward processing program
allows spreadsheet objects to be embedded. Any spreadsheet object that provides this interface can be em-
bedded, regardless of how the objectis implemented. Moreover, any spreadsheet object, whether implemented
before or after the word processing program is compiled, can be embedded.

10

15

20

25

30

35

55

EP 0 664 510 A2

class [SpreadSheet
{ virtual void File() = 0;
virtual void Edit() = 0;
virtual void Formula() = 0;
virtual void Format() = 0;
virtual void GetCell (string RC, cell *pCell) = 0;
virtual void Data() = 0;

The developer of a spreadsheet program would need to provide an implementation of the interface to allow
the spreadsheet objects to be embedded in a word processing document.

When the word processing program embeds a spreadsheet object, the program needs access to the code
that implements the interface for the spreadsheet object To access the class code, each implementation is
given a unique class identifier. For example, code implementing a spreadsheet object developed by Microsoft
Corporation may have a class identifier of "MSSpreadsheet," while code implementing a spreadsheet object
developed by another corporation may have a class identifier of "LTSSpreadsheet." A persistent registry in
each computer system is maintained that maps each class identifier to the code that implements the class.
Typically, when a spreadsheet program is installed on a computer system, the persistent registry is updated
to reflect the availability of that class of spreadsheet objects. So long as a spreadsheet developer implements
each function member defined by the interface and the persistent registry is maintained, the word processing
program can embed instances of the developer’s spreadsheet objects into a word processing document. The
word processing program accesses the function members of the embedded spreadsheset abjects without re-
gard to who has implemented them or how they have been implemented.

Various spreadshest developers may wish, however, to implement only certain function members. For ex-
ample, a spreadsheet developer may not want to implement database support, but may want to support all
other function members. To allow a spreadsheset developer to support only some of the function members,
while still allowing the objects to be embedded, multiple interfaces for spreadsheet objects are defined. For
example, the interfaces IDatabase and IBasic may be defined for a spreadshest abject as follows.

class [Basic
{ virtual void File() = 0;
virtual void Edit() = 0;
virtual void Formula() = 0;
virtual void Format() = 0;
virtual void GetCell (string RC, cell *pCell) = 0,

}

class [Database

{ virtual void Data() = 0;
}

Each spreadsheet developer would implement the IBasic interface and, optionally, the iDatabase interface.
At run time, the word processing pragram would need to determine whether a spreadsheet object to be
embedded supports the IDatabase interface. To make this determination, another interface is defined (that
every spreadsheet object implements) with a function member that indicates which interfaces are implemented
for the object. This interface is named IUnknown (and referred to as the unknown interface or the object man-

6

10

15

20

25

30

35

§5

EP 0 664 510 A2

agement interface) and is defined as follows.

class IUnknown

{ virtual HRESULT QueryInterface (REFIID iid, void **ppv) = 0;
virtual ULONG AddRef() = 0;
virtual ULONG Release () = 0;

}

The tUnknown interface defines the function member (method) Querylinterface. The method Queryinterface
is passed an interface identifier (e.g., "IDatabase”) in parameter iid (of type REFIID) and returns a pointer to
the implementation of the identified interface for the object for which the method is invoked in parameter ppv.
If the object does not support the interface, then the method returns a false. The type HRESULT indicates a
predefined status, the type REFIID indicates a reference to an interface identifier, and the type ULONG indi-
cates an unsigned long integer.

Code Table |

HRESULT XX::QueryInterface(REFIID iid, void **ppv)
{ ret = TRUE;
switch (iid) {
case [ID_IBasic:
*ppv = piBasic;
break;
case [IM_IDatabase:
*ppv = plDatabase;
break;
case [[D_[Unknown:
*ppv = this;
break;
default:
ret = FALSE;

}
if (ret = TRUE) {AddRef{();};
return ret;

Code Table 1 contains C++ pseudocode for a typical implementation of the method Queryinterface for
class XX, which inherits the class IlUnknown. If the spreadsheet object supports the IDatabase interface, then
the method Querylnterface includes the appropriate case label within the switch statement. The variables pl-
Basic and plDatabase point to a pointer to the virtual function tables of the IBasic and IDatabase interfaces,
respectively. The method Querylnterface invokes to method AddRef (described below) to increment a refer-
ence count for the object of class XX when a pointer to an interface is returned.

Code Table 2

void XX::AddRef() {refcount++;}

void XX::Release() {if(—refcount==0) delete this;}
The interface IUnknown also defines the methods AddRef and Release, which are used to implement ref-
erence counting. Whenever a new reference to an interface is created, the method AddRef is invoked to in-

crement a reference count of the aobject Whenever a reference is no longer needed, the method Release is

7

10

18

20

25

30

35

§5

EP 0664 510 A2

invoked to decrement the reference count of the object and, when the reference count goes to zero, to deal-
locate the object. Code Table 2 contains C++ pseudocode for a typical implementation of the methods AddRef
and Release for class XX, which inherits the class IUnknown.

The IDatabase interface and IBasic interface inherit the lUnknown interface. The following definitions il-
lustrate the use of the IlUnknown interface.

class [Database : public IUnknown
{ public:

virtual void Data() = 0;
3

class IBasic : public IUnknown
{ public:

virtual void File() = 0;

virtual void Edit() = 0;

virtual void Formula() = 0,

virtual void Format() = 0;

virtual void GetCell (string RC, cell *pCell) = 0;
H

Figure 2 is a block diagram illustrating a sample data structure of a spreadsheet object using nested class-
es. The spreadsheet object comprises object data structure 201, [IBasic interface data structure 203, IDatabase
interface data structure 204, the virtual function tables 202, 205, 208 and methods 207 through 221. The object
data structure 201 contains a pointer to the virtual function table 202 and pointers to the IBasic and IDatabase
interface. Each entry in the virtual function table 202 contains a pointer to a mathod of the lUnknown interface.
The IBasic interface data structure 203 cantains a pointer to the virtual function table 205. Each entry in the
virtual function table 205 contains a pointer to a method of the I1Basic interface. The IDatabase interface data
structure 204 contains a pointer to the virtual function table 206. Each entry in the virtual function table 207
contains a pointer to a method of the |Database interface. Since the IBasic and |Database interfaces inherit
the IlUnknown interface, each virtual function table 205 and 206 contains a pointer to the methods Queryin-
terface, AddRef, and Release. In the following, an object data structure is represented by the shape 222 labeled
with the interfaces through which the object may be accessed.

The following pseudocode illustrates how a word processing program determines whether a spreadsheet
abject supports the IDatabase interface.

if (pSpreadsheet->Querylinterface("IDatabase", &plDatabase))

// IDatabase supparted

else

/1 IDatabase not supported
The pointer pSpreadsheet is a pointer to an instance of the spreadsheet class shown in Figure 2. (pSpreadsheet
points to data structure 201.) If the object supports the IDatabase interface, the method Queryinterface de-
fined by method 207 sets the pointer plDatabase to point to the IDatabase data structure 204 and returns true
as its value.

Normally, an object can be instantiated (an instance of the object created in memory) by a variable de-
claration or by the "new" operator. However, both techniques of Instantiation need the class deflnition at com-
pile time. A different technique is neaded to allow a word processing program to instantiate a spreadsheet ob-
ject atrun time. One technique provides a global function CreatelnstanceXX, which is defined in the following.

static void CreatelnstanceXX (REFIID iid, void **ppv)= 0;
The meathod CreatelnstanceXX instantiates an object of class XX and returns a pointer ppv to the interface of
the object designated by parameter iid.

10

15

20

25

30

35

55

EP 0 664 510 A2

Summary of the Invention

It is a goal of the present invention to provide a method and system for aggregating objects.

Itis another goal of the present invention to provide a method and system for dynamically modifying object
behavior.

It is another goal of the present invention to provide a method and system for dynamically aggregating ob-
jects.

Itis another goal of the present invention to provide a method and system for statically aggregating objects.

It is another goal of the present invention to provide a method and system for enclosing an object within
anather object while exposing an interface of the enclosed object to a client of the enclosing object.

It is another goal of the present invention to provide a method and system for enclosing an object within
another object after the enclosing object is instantiated.

Itis another goal of the present invention to provide a method and system for dynamically combining ob-
jects of different types into a single object.

It is another goal of the present invention to provide a method and system for implementing an object that
can be either enclosed within another object or not enclosed within another object without modifying the im-
plementation of the object.

It is another goal of the present invention to provide a method and system for implementing an aggregate
object so that a client is unaware that the object is an aggregate.

It is another goal of the present invention to provide a method and system for enclosing objects wherein
an enclosed object can itself be an enclosing object to an arbitrary level of enclosing.

It is another goal of the present invention to provide a method and system for enhancing a base object’'s
behavior by adding a new interface to it.

It is another goal of the present invention to provide a method and system for enhancing a base object’s
apparent behavior by adding an interface to it that overrides standard behavior of the base abject.

Itis another goal of the present invention to provide a method and system for supplying default functionality
to objects by enclosing them within an enclosing object where an enclosed or enclosing object implements
the default functionality.

It is another goal of the present invention to provide a method and system for implementing controlling
behavior over common functionality present in enclosed objects.

It is another goal of the present invention to provide a method and system for determining which interface
to provide to a client when the client requests an interface that is implemented by more than one enclosed
object.

These and other goals, which will be apparent as the invention is more fully described below, are provided
by a method and system for aggregating objects within a computer system. In a preferred embodiment, the
method aggregates an enclosed object within an enclosing object. The enclosed object has an object man-
agement interface and one or more external interfaces, while the enclosing object has a controlling object man-
agement interface. Each interface exposed ta a client by the aggregate object has a query function member
far receiving an identifier of an Interface and for returning a reference to the identified interface. The query
function member of the controlling object management interface of the enclosing object receives an identifier
of an Interface exposed by the enclosing aobject and returns a reference to the exposed Interface. A preferred
method creates an instance of the enclosed object. When, the query function member of an exposed interface
of the enclosed object recelves an identifier of an interfaca, it invokes the query function membaer of the con-
trolling object management interface of the enclosing object passing the received identifier, and returns the
reference returned by the invoked query functian member of the controlling object management interface of
the enclosing object as a reference to the identified interface.

In a preferred embodiment of static aggregation, a query function member of an enclosed object is imple-
mented with knowledge of the external interfaces of the enclosed object and has no knowledge of interfaces
(other than the controlling object management interface) of the enclosing object or other enclosed objects. The
query function member of a controlling object management interface of the enclosing object is implemented
with knowledge of the exposed interfaces of enclosed objects.

In a preferred embodiment of dynamic aggregation, an object can be modified dynamically by allowing
interface instances, as implemented by objects, to be aggregated during the execution of a dient program.
Interfaces are aggregated by dynamically enclosing the objects that implement them into a multitype object.
Each interface to be added is implemented by an object which has the ability to be aggregated. A multitype
object is created to act as an enclosing object. The multitype object has an add interface function member,
which can be used to aggregate interfaces by adding them to the enclosing multitype object. The multitype
object also has an add object function member for aggregating all of the interfaces of an object. The multitype

10

18

20

25

35

&5

EP 0 664 510 A2

object also has a query function member for retrieving references to the added interfaces upon request from
a client. This query function member is part of the controlling object management interface of the enclosing
multitype object. Also, an instance of an object that implements the interface to be aggregated is created. Dur-
ing creation, a pointer to the enclosing muititype object is passed to the object to be enclosed to enable the
enclosed object to communicate with the enclosing multitype object The created object implementing the in-
terface to be aggregated has a query function member, which supports retrieval of a reference to the interface
to be aggregated. A preferred method invokes the add interface function member or the add object function
member of the enclosing multitype object passing it a reference to the created object implementing the inter-
face to be aggregated. Later, the query function member of the enclosing multitype object is invoked in order
to retrieve a reference to the interface that has been aggregated.

Brief Description of the Drawings

Figure 1 is a block diagram illustrating typical data structures used to represent an object.

Figure 2 is a block diagram illustrating a sample data structure of a spreadsheet object using nested class-
es.

Figure 3 is a block diagram showing an aggregate object.

Figure 4 is a block diagram of the data structure layout of an instance of an object of class S1.

Figure § is a block diagram of the data structure layout of an object of class S3.

Figures 6A and 6B are block diagrams illustrating the cooperation between an enclosing object and an
enclosed object.

Figures 7A, 7B, and 7C are block diagrams of the sequence of adding two abjects to a multitype object.

Figure 8 is a block diagram of the data structure layout of an instance of an object of class S1.

Figure 9 Is a flow diagram of the method AddInterface of the IMultitype interface implemented by a mul-
titype object.

Figure 10 is a flow diagram of the method Queryinterface of the controlling IUnknown interface for a mul-
titype object.

Figure 11 is a block diagram showing the data structure layout of a multitype object, comesponding to Fig-
ure 7C, after the |Basic, IPrint, and IDatabase interfaces have been dynamically aggregated using the method
AddObject.

Figure 12 is a pictorial representation of a spreadsheet object and a database query object, which can be
aggregated together to create an attached database query object.

Figure 13 is a block diagram of an aggregated attached database query object.

Detailed Description of the Invention

The present invention provides a method in a computer system far aggregating objects. Objects can either
be aggregated statically or dynamically. Using static aggregation, an enclosing object typically has compile
time knowledge of the exposed interfaces of enclosed objects. The object management interface of the en-
closing object is therefore customized to return interface pointers to exposed interfaces of enclosed objects
using this knowledge. Instances of these statically aggregated objects are created dynamically (at run time).

Using dynamic aggregation, an enclosing object is instantiated and can be used to aggregate objects or
interfaces at run time. The enclosing object has no a priori knowledge of tha enclosed abjects or interfaces,
thus ne compile time knowledge is used by the enclosing object. Similarly, the enclosed objects and interfaces
have no knowledge of the implementation or the presence of interfaces of the enclosing object, with the ex-
ception of the controlling abject management interface used to aggregate objects and Interfaces. Also, a rules
mechanism is provided to control access to aggregated objects and interfaces.

Each of these types of aggregation Is discussed in turn in the following sections. In a preferred embodi-
ment, the methods and systems of the present invention are Implemented on a computer system comprising
a central processing unit, memory, and input/output devices.

Statlic Aggregatian

In a preferred embodiment of static aggregation, an aggregate object provides a plurality of interfaces to
its clients. The computer program that instantiates an object is referred to as a client. An aggregate object com-
prises ane or more enclosed objects and an implementation of the IUnknown interface, which is referred to as
the controlling IUnknown interface of the aggregate object. An aggregate object exposes to its clients its own
interfaces and interfaces from the enclosed objects. The method Querylinterface of the controlling IlUnknown

10

10

15

20

25

30

35

EP 0 664 510 A2

interface returns a pointer to each interface exposed by the aggregate object. The aggregate object instantiates
each enclosed object. This instantiation can be performed during construction of the aggregate object or can
be postponed until an interface of the enclosed object is requested. Each enclosed object contains a pointer
to the controlling [Unknown interface. The method Querylnterface of an exposed interface of an enclosed ob-
jectis preferably implemented to invoke the method Querylnterface of an IUnknown interface. When the en-
closed object is implemented, the developer typically has no knowledge of what interfaces the enclosing object
may expose. Consequently, the method Querylnterface of an enclosed object invokes the method Queryin-.
terface of the controlling IUnknown interface to retrieve a pointer to the requested interface. The method Quer-
yinterface of the controlling IUnknown interface is typically implemented with knowledge of all the exposed
interfaces. When an object is not enclosed, the controlling IUnknown interface is the IUnknown interface of
the object. Conversely, when an object is enclosed, the controlling IUnknown interface is the IUnknown inter-
face of the enclosing object.

In a preferred embodiment, an aggregate object maintains a reference count. When the aggregate object
is instantiated, its reference count is set to one. The method Queryinterface of the controlling 1Unknown in-
crements the reference count when a reference is returned to the client. The method AddRef of an exposed
interface of an enclosed object invokes the method AddRef of the controlling IlUnknown interface to increment
the reference count of the aggregate object. Similarly, the method Release of an expased interface of an en-
closed object invokes the method Release of the controlling {Unknown interface to decrement the reference
count of the aggregate object and delets the aggregate object when the reference count equals zero. When
an enclosed object is instantiated, the reference count of the enclosed object is setto one. When the aggregate
object is deleted, the method Release of the IUnknown interface of each enclosed object is invoked to delete
the enclosed object.

Figure 3 is a block diagram showing an aggregate object. The aggregate cbject S3 exposes interfaces A,
B, C, F, and the controlling lUnknown. The aggregate (enclosing) object S3 comprises enclosed object S1 303,
enclosed object S2 302, and implementation 13 304. The enclosed object S1 implements external interfaces
C and D, and the enclosed object S2 implements external interfaces E and F. (An external interface is an in-
terface of an object that can be exposed by an enclosing object. An internal interface is an interface of an object
that cannot be exposed by an enclosing object.) The implementation I3 implements external interfaces A, B,
and the controlling lUnknown. A client of the aggregate object S3 need not be aware that the object is an ag-
gregate. The aggregate object S3 instantiates objects S1and S2 either during construction of aggregate object
S3 or at a later time. The implementation I3 contains pointers to the lUnknown interfaces of objects S1 and
$2. Objects S1 and S2 are initialized to contain a pointer to the controlling IUnknown interface.

The method Querylnterface of an exposed interface can return a pointer to each exposed interface and
increments the reference count of the aggregate object when a pointer is returned. The method Querylnterface
of the controlling IlUnknawn has direct access to the pointers to the interfaces—-A, B, and controlling IlUnknown
--that implementation 13 implements and invokes the method Querylnterface of the IUnknown interface of the
enclosed objects to retrieve pointers to the exposed interfaces -- C and F --of enclosed objects S1 and S2.
When a polnter to an exposed Interface Is returned, the method Querylnterface of the controlling IUnknown
interface increments the reference count of the aggregate object S3 by invaking the method AddRef of the con-
trolling IlUnknown interface. The method Querylinterface of each exposed interface (other than the controlling
IUnknown Interface) preferably invokes the method Queryinterface of the controliing IlUnknown Interface.

11

10

15

20

25

30

35

55

EP 0 664 510 A2

Code Table 3

void CreatelnstanceS 1 ([Unknown *punkOuter, REFIID iid, void **ppv)
{ 1Unknown *punk;

S1::Createlnstance (punkOuter, &punk);

punk->QueryInterface (iid, ppv);

punk->Release ();
}

class IC: public IlUnknown
{ // methods of IC}

class ID: public IUnknown
{ // methods of ID}

class S1: public IUnknown

{
public:

12

10

18

20

25

30

35

85

private:

EP 0 664 510 A2

static void Createlnstance(lUnknown *punkOuter, lUnknown **ppunk)

{
}

S1 *pSl = new Si(punkOuter),
pS1->Queryinterface(11D_IUnknown, ppunk);

void S1(IUnknown *punkOuter) : m_C(this), m_D(this)

{

}

if (punkOuter == NULL)
m_punkOuter = this;
else
m_punkOuter = punkOuter;
m_refcount = 0; .

class C: public IC

¢
public:

private:

}

friend C;

C

void C(S1 *pS1) {m_pSi =pSl;}

virtual boolean QueryInterface (REFIID iid, void **ppv)
{ return m_pS1->m_punkOuter->QueryInterface(iid, ppv);}

virtual void AddRef()
{ m_pS1->m_punkOuter->AddRef();}

virtual void Release()
{ m_pS1->m_punkQuter->Release();}

// other methods of IC
S1 *m_pSl;
m_C;

class D: public [D

{
public:

private:

3

void D(S1 *pS1) {m_pS1 = pSi;}

virtual boolean QueryInterface (REFIID iid, void **ppv)
{ return m_pS1->m_punkQOuter->Querylinterface(iid, ppv);}

virtual void AddRef()
{ m_pS1->m_punkQuter->AddRef();}

virtual void Release()
{ m_pS1->m_punkOuter->Release();}
// other methods of ID

S1 *m_pSl1;

13

10

15

20

25

30

35

55

EP 0 664 510 A2

- friend D;
D m_D;

public:
virtual boolean Queryinterface (REFIID iid, void **ppv)
{ ret = TRUE;

switch (iid)

{ case [ID_C:
*ppv=&m_C;
m_punkOuter->AddRef();
break;

case [ID_D:
*ppv=&m_D;
m_punkQuter->AddRef();
break;

case IID_IUnknown:
*ppv = this;
AddRef(};
break;
default:

ret = FALSE;

}

return ret;

}
virtual void AddRef(){ m_refcount++;}
virtual void Release() {if (--m_refcount == 0) delete this;}

private:
IUnknown *m_punkOuter;
int m_refcount;

Code Table 3 contains C++ pseudocode for a preferred class definition of the object S1, which can be en-
closed in an aggregate (an aggregatable object) along with a global function that creates an instance of the
object. The classes IUnknown, IC, and ID are interfaces that define the methods of each interface. The class
S1 implements the IUnknown interface, the IC interface, and the ID interface. The class 81 implements the
IC and ID interfaces as external interfaces. Figure 4 is a block diagram of the data structure layout of an in-
stance of an object of class S1. Instance structure 401 contains the data members of class S1 (m_C, m_D,
m_punkQuter, m_refcount) and a pointer to the virtual function table pointer (S1::vfptr). The data members
m_C and m_D are instances of an object of classes C and D, respectively. Classes C and D are friends of
class S1, which allows C and D abjects to access the private members of class S1. The virtual function table
pointer S1::viptr points to virtual function table 402, the virtual function table pointer within data member m_C
$1::C:.vfptr points to virtual function table 403, and the virtual function table pointer within data member m_D
S1::D:.vfptr points to virtual function table 403A. Virtual function table 402 contains pointers to the virtual func-
tions defined for the IUnknown interface, virtual function table 403 contains pointer to the virtual functions de-
fined for the C Interface, and virtual function table 403A contains pointers to the virtual functions defined for
D interface. The ellipsis in virtua! function tables 403 and 403A indicates pointers to additional function mem-
bers of classes C and D, respectively. Functions 404 through 408 are the function members of class S1. Func-
tlon 407 is the constructor for class $1. Function 408 Is the function Createlnstance for class S1. Functions
409 through 412 are the function members of class C. Function 412 Is the canstructor for class C. Functions
413 through 416 are the function members of class D. Function 416 is the constructor for class D.

As shown in Code Table 3, the method S1::Querylnterface returns a pointer to the interface C, the interface
D, or the interface lUnknown. When a pointer to the interface C or interface D is returned, the method S1:Quer-
yinterface invokes the method S1::AddRef to increment the reference count for the S1 object. The method
S1::AddRef increments the reference count, and the method S1::Release decrements the reference countand

14

10

18

20

25

30

35

55

EP 0 664 510 A2

deletes the S1 object when the reference count is zero. When a pointer to the interface C or interface D is
returned, the method S1:Querylnterface invokes the method AddRef of the controlling lUnknown interface,
which when the S1 object is not aggregated is the method S1::AddRef.

The global function CreatelnstanceS1 creates an instance of an object of class S1. A client invokes this
function to instantiate an object of class $1. Thus, a client can instantiate an object of class S1 without having
access to the S1 class definition at compile time orrun time. The function CreateinstanceS1 is passed a pointer
to the controlling IUnknown (punkOuter) when the instantiated S1 objectis enclosed within an aggregate object
and an identifier (iid) of an interface to return. The function CreatelnstanceS1 returns a pointer (ppv) to the
identified interface. The function CreatelnstanceS1 invokes the method S1::Createlnstance passing the para-
meter punkOuter. The method S1::Createlnstance instantiates an S1 object and returns a pointer (punk) to
the IlUnknown interface of the S1 object. The function CreatelnstanceS1 invaokes the method Querylnterface
of the S1 object to retrieve a pointer to the identified interface. The function CreatelnstanceS1 then invokes
the method Release of the S1 object because the temporary pointer punk is no longer needed.

The method S1::Createlnstance instantiates an S1 object and returns a pointer (ppunk) to the IlUnknown
interface of the S1 object. The method S1::Createlnstance is passed a pointer (punkOuter) to the controlling
IUnknown. The method S1::Createlnstance uses operator new to instantiate the S1 object. During instantiation,
the constructor $1::81 is invoked and passed the value of the parameter punkOuter. After the S1 abject is con-
structed, the method S1::Createlnstance invokes the method S1::Querylnterface to retrieve a pointer to the
IUnknown interface of the S1 object.

The constructor S1::S1 initializes the data members m_C, m_D, m_punkOuter, and m_refcount. The con-
structor S$1::81 is passed the parameter punkOuter. During instantiation of the data members m_C and m_D,
the constructors C::C and D::D are invoked and passed the this pointer for the S1 object. If the value of the
parameter punkOuter is NULL, the constructor S1::S1 sets the data membser m_punkOuter to the value of the
this pointer (which points to the newly instantiated S1 object). If the value of the parameter punkOuter is non-
NULL, the constructor S1::81 sets the data member m_punkOuter to the value of parameter punkOuter. Data
member m_punkOuter points to the value of the controlling IUnknown of the aggregate when the S$1 object is
enclosed and points to the controlling IUnknown of the S1 object when the S1 object is not enclosed. The con-
structor $1::81 also initializes the data member m_refcount to zera.

The constructor C::C is passed a pointer to the S1 object. The constructor C::C stores the passed pointer
in data member C:xm_pS1. The data member C::m_pS1 is used by the methods of class C to access the data
member S1::m_punkOQuter.)

The methods C::Queryinterface, C::AddRef, and C::Release invoke the corresponding methods of the iUn-
known interface pointed to by data member S$1::m_punkOuter, which when the $1 object is enclosed, points
to the controlling IlUnknown interface of the aggregate.

The constructor and other methods of class D are analogous to those of class C.

Figure 4 shows an instance of an S1 object that is not part of an aggregate. The data members
81::C::m_p8&1, §1::D::m_pS1, and S1::m_punkOuter are initialized to pointer to the S1 object itself. The meth-
ods Queryinterface, AddRef, and Release of the data members m_C and m_D Invoke the IUnknown methods
of the interface of the S1 object.

The S2 object that implements interfaces E and F is analogous to the S1 object as described above.

15

10

15

20

25

30

35

55

EP 0 664 510 A2

Code Table 4

void CreatelnstanceS3 (ILJnknown *punkQuter, REFIID iid, void **ppv)
{ IUnknown *punk;

S3::Createlnstance (punkOuter, &punk);

punk->Query Interface (iid, ppv);

punk->Release ();
}

class 1A: public IUnknown
{ // methods of class 1A}

class IB: public TUnknown
{ // methods of class IB}

class $3: public 1Unknown
{
public:
static void Createlnstance(IUnknown *punkQuter, [Unknown **ppunk)
{ S3 *pS3 = new S3(punkOuter);
CreatelnstanceS 1(pS3->m_punkOuter, ID_IUnknown, pS3->m_punkS|1);
CreatelnstanceS2(pS3->m_punkQuter, 11D_1Unknown, pS3->m_punkS2);
pS3->QueryInterface(IID_IUnknown, ppunk);}

private:
void S3(IUnknown *punkOuter) : m_A(this), m_B(this)
{ if (punkOuter == NULL)
m_punkQuter = this;
else -
m_punkQuter = punkQuter;
m_refcount = 0;} '

void ~S3() {m_punkS1->Release();
m_punkS2->Release(); }

class A: public IA

{
public:
void A(S3 *pS3) {m_pS3 = pS3}

virtual boolean QuerylInterface (REFIID iid, void **ppv)
{ return m_pS3->m_punkOQuter->Querylnterface(iid, ppv);}

virual void AddRef{)
{ m_pS3->m_punkQuter->AddRef();}

virtual void Release()
{ m_pS3->m_punkQuter->Release();}

16

10

18

20

25

30

35

55

public:

EP 0 664 510 A2

\\ other methads of TA

private:
S3 *m_pS3;

I

friend A;

A m_A;

class B: public IB

{

public:
void B(S3 *pS3) {m_pS3 = pS3}
virtual boolean Queryinterface (REFIID iid, void **ppv)
{ return m_pS83->m_punkOuter->Querylnterface(iid, ppv);}
virtual void AddRef()
{ m_pS3->m_punkOuter->AddRef();}
virtual void Release()
{ m_pS3->m_punkOuter->Release();}
\\ other methods of IB

private:
S3 ‘m_pS3;

N

friend B;

B m_B;

virtual boolean Querylnterface(REFIID iid, void **ppv)
{ ret = TRUE; .
switch (iid)
{ case IID_C:

ret = m_punkS 1->QueryInterface(iid, ppv)
break;

case [ID _F:
ret = m_punkS2->QueryInterface(iid, ppv)
break;

case [ID_A:
*ppy =&m_A;
m_punkOuter->AddRef();
break;

case [ID_B:
*ppv =&m_B;
m_punkQuter->AddRef{);
break;

case IID_[Unknown:
*ppv = this;
AddRef();
break;

default:
ret = FALSE,

17

’

s

10

15

20

25

30

35

55

EP 0 664 510 A2

return ret;

}

virtual void AddRef() { m_refcount++;}

virtual void Release() {if (--m_refcount == Q) delete this;}

private:
1Unknown *m_punkOuter;
int m_refcount;
IUnknown *m_punkS1:
IUnknown *m_punkS2;

H .

Code Table 4 contains C++ pseudocode for a preferred class definition of an aggregate object. The class
S3 exposes the interfaces IUnknown, A, B, C, and F. To provide the C interface, the class S3 encloses an S1
object and exposes the C interface. To provide the F interface, the class S3 encloses an S2 object and exposes
the F interface. The S3 object exposes the C and F interfaces by returning pointers to the C and F interfaces
through the method Querylnterface of the controlling lUnknown interface. The D interface of the S1 object
and the E interface of the S2 object are external interfaces, but the S3 object does not expose these interfaces.

The methods S3::Querylnterface, S3::AddRef, and S3::Release compose the controlling IUnknown inter-
face for the aggregate. The method S3::Querylnterface returns a pointer to the controlling lUnknown, A, B, C,
or F interfaces. When a pointer to the controlling lUnknown interface is returned, the method $3::Querylnter-
face invokes the method S3::AddRef to increment the reference count for the S3 object. The method S$3::Ad-
dRef increments the reference count, and the method S3::Release decrements the reference count and deletes
the S3 object when the reference count is zero. When a pointer to the A, B, C, or F interfaces is returned, the
method S3::Querylnterface invokes the method AddRef of the controlling IlUnknown interface, which when the
S3 object is not aggregated is the method S3::AddRef.

The global function CreatelnstanceS3 creates an instance of an object of class S3. A client invokes this
function to instantiate an object of class S3. Thus, a client can instantiate an object of class $3 without having
access to the S3 dass definition at compile time orrun time. The function CreatelnstanceS3 is passed a pointer
to the controlling lUnknown interface (punkOuter) when the instantiated S3 object is enclosed within an ag-
gregate object and an identifier (iid) of an interface exposed by the class $3 to return. The function Createln-
stanceS3 returns a pointer (ppv) to the identified interface. The function Createlnstance$3 invokes the method
S3::Createlnstance passing the parameter punkOuter. The method S3::Createlnstance instantiates an S3 ob-
ject and returns a pointer (ppunk) to the lUnknown interface of the $3 object. The function CreatelnstanceS3
then invokes the method S3::Querylnterface to retrieve a pointer to the identified interface. The function Cre-
atelnstanceS3 then invokes the method S3::Release because the temporary pointer punk is no longer needed.

The method S3::Createlnstance instantiates an S3 object and returns a pointer (ppunk) to the lUnknown
interface of the 83 object. The method $3::Createlnstance is passed a pointer (punkOuter) to the controlling
IUnknown. The method S3::Createlnstance uses operator new to instantiate the S3 object. During instantiation,
the constructor $3::53 is invoked and passed the value of the parameter punkOuter. After the S3 object is con-
structed, the method S3::Createlnstance invokes the function CreatelnstanceS1 to create the enclosed S1 ob-

" ject. The method S3::Createlnstance passes the parameter pS3->m_punkOuter and the interface identifier for

the IUnknown interface and is returned a pointer to the IUnknown interface of the S1 object. The method
S3::Createlnstance stores the returned pointer in data member S3::m_punkS1. The method S3::Createln-
stance then invokes the function CreatelnstanceS2 to create an S2 object in 2 manner analogous to the cre-
atlon of the S1 abject. The method S3::Createlnstance invokes the method S3::Querylnterface to retrieve a
pointer to the IUnknown interface.

The method S3::AddRef increments the reference count of the $3 object. The method S$3::Release dec-
rements the reference count. When the reference counts Is zero, the method S3::Release deletes the S3 ob-
ject

The constructor S$3::83 initializes the data members m_A, m_B, m_punkOuter, and m_refcount. The con-
structor $3::83 is passed the parameter punkOuter. During instantiation of the data members m_A and m_B,
the constructors A::A and B::B are invoked and passed the this pointer for the S3 object. If the value of the
parameter punkOuter is NULL, the constructor S3::S3 sets the data member m_punkOuter to the value of the
this pointer (which points to the newly instantiated S3 object). If the value of the parameter punkOuter is non-

18

10

18

20

25

30

35

&5

EP 0 664 510 A2

NULL, the constructor S3::S3 sets the data member m_punkOuter to the value of parameter punkOuter. Data
member m_punkOuter paints to the value of the controlling lUnknown interface of the aggregate when the S3
object is enclosed and points to the IUnknown interface of the S3 object when the S3 object is not enclosed.
The constructor S3::S3 initializes the data member m_refcount to zero.

The destructor S3::~S3 invokes the method S1::Release to decrement the reference count of the enclosed
S1 object. Since the reference count was set to one during instantiation of the S1 object, the method S1::Re-
lease deletes the S1 object The destructor S3::~S3 decrements the reference count of the S2 object in an
analogous manner.

The methods of the A and B interfaces have an analogous behavior to the methods of the C interface.
Thus, the A and B interface can be exposed when an S3 object is enclosed.

Figure 5 is a block diagram showing the data structure layout of an S3 object. The data structure layout
comprises instance data 501, virtual function tables 5§02, 503, and 504, methods 505 through 517, and instanc-
esofan S1 object 401-416 and an S2 object 519. The instance data 501 contains a pointer to the virtual function
table for the controlling IlUnknown interface, data members m_A and m_B which are instances of class A and
B, data member m_punkOuter which points to the IlUnknown interface of the S3 object, data member m_re-
fcount which contains the reference count for the S3 object, data member m_punkS1 which points to the IUn-
known interface of the enclosed S1 object, and data member m_punkS2 which points to the IUnknown interface
of the enclosed S2 object 519. When the enclosed S1 object is instantiated, its data member S1::m_punkOuter
is initialized to point to the IUnknown interface of the S3 object. Similarly, when the enclosed S2 object is in-
stantiated, its data member S2::m_punkOuter is initiatized to point to the IUnknown interface of the S3 object.

Figures 6A and 6B are block diagrams illustrating the cooperation between an enclosing object and an
enclosed object. Figure 6A is a block diagram illustrating an object of class S1 that is not enclosed within an-
other object. The class S1 object 801 includes data member m_punkOuter, which points to the IUnknown in-
terface and methods 603, 604, 605, and 606. The method IUnknown::Querylnterface 603 returns a pointer to
the requested interface and increments the reference count. The methods C::Querylinterface 605 and C::Ad-
dRef 606 invoke the corresponding methods of the IUnknown interface. The implementation of the methods
of class D (not shown) are analogous to those of class C. Figure 6B is a block diagram illustrating an object
of class S3 that encloses objects of class S1 and $2. The S2 cobject, which is analogous to the S1 object, is
not shown. The data member m_punkQuter 802 of the class S1 object 601 points to the IUnknown interface
of the dlass S3 object 610. The methad IUnknown::Querylnterface 613 returns a pointer to each of the exposed
objects and invokes the method IUnknown::Querylnterface 603 pointed to by data member m_punkS1 619 to
retrieve a pointer to the C interface. The data member m_punkOuter 812 paints to the IUnknown interface of
the class S3 object 610. The methods Querylnterface 616 and 617 of the class A and B objects invoke the
methods pointed to by data member m_punkOuter 612.

In the above-described embodiment of the present invention, the method Querylnterface of the controlling
IUnknown interface of an aggregate invokes the method Queryinterface of the lUnknown interface of enclosed
objects to retrieve pointers to the exposed interfaces. In an alternate embodiment of the present invention, an
enclosing object can cache polnters to interfaces of enclosed abjects that the enclosing object exposes. Thus,
when the method Querylnterface of the controlling IUnknown is invoked, the method can retrieve and return
the cached pointers after calling the method AddRef of the controlling lUnknown interface, rather than invoke
the method Queryinterface of the IlUnknown interface of the enclosed object. To implement this alternate em-
bediment, an enclosing object defines a data member for each cached pointer. When the enclosed object is
instantiated (typically during construction of the enclosing object), the method Querylnterface of the IlUnknown
interface of the enclosed object is invoked to retrieve a pointer of the exposed interface. It is preferred that
the retrieved pointer is not reference counted so that the enclosing object effectively maintains only one pointer
(e.g., S3::m_punkS1) to an enclosed object. The enclosed object can then be deleted by a single call to the
method Release. Therefore, after the pointer is cached, the method Release of the exposed interface is in-
voked to remove the reference count attributable to the cached pointer.

In the above-described embodiment of the present invention, the implementation of the method Queryin-
terface of the controlling IUnknown interface includes a switch statement that specifies which interfaces are
exposed. For example, the switch statement of the method S3::Querylnterface includes a case label for each
exposed interface A, B, C, F, and the controlling lUnknown. Thus, the exposed interfaces are statically defined
during implementation of the enclosing object. in an alternate embodiment, the method Querylinterface of the
controlling IUnknown interface can be implemented without specific knowledge of the external interfaces of
the enclosed objects. When the method Querylnterface is requested to return a pointer to an interface that it
does not implement, the method can invoke the method Queryinterface of the IlUnknown interfaces of the en-
closed objacts to retrieve a pointer to the identified interface, ifimplemented by an enclosed object. Code Table
5 contains C++ pseudocode for a preferred implementation of the method Querylnterface of the controlling

19

10

15

20

25

30

35

55

EP 0 664 510 A2

IUnknown of a S3 object that implements this alternate embodiment. In addition to returning a pointer to each
external interface of the enclosed objects, the method Querylnterface of the controlling IUnknown could be
implemented to not expose certain external interfaces, while exposing all other external interfaces.

Code Table 5
virtual boolean QueryInterface (REFIID iid, void **ppv)
{ ret = TRUE;
switch (iid)

{ casc 1ID_A:
‘ppv=&m_A;
m_punkOuter->AddRef();
break;

case 11D_B:
*ppv =&m_B;
m_punkQuter->AddRef{();
break;

case I11D_lUnknown:
*ppv = this;
AddRef();
break;

default:

if (m_punkS1->Queryinterface (iid, ppv)) { return ret;};
if (m_punkS2->Querylnterface (iid, ppv)) { return ret;};

ret = FALSE;
}
return ret;
}

In the above-described embodiments, error checking has not been described. It is preferred that various
types of error checking are performed to ensure that an aggregate is properly created. For example, if an en-
closing object tries to enclose an object that is not aggregatable, then the instantiation of the enclosing object
should fail (e.g., the function CreatelnstanceS1 returns a flag indicating failure).

In the above-described embodiments, an aggregate object can itself be an enclosed object within an en-
closing object. This enclosing (nesting) can occur to any depth. Alternately, an aggregate object can be imple-
mented to be non-aggregable. The function CreatelnstanceXX for the class XX can return a flag indicating a
failure when the parameter punkOuter is non-null, that is, when aggregation is desired.

In the above-described embadiment, an object for each external interface of an aggregable abject is In-
stantiated as a data member of the aggregable object. In an'alternate embodiment, the external interfaces are
inherited by the aggregable object, rather than implemented as data members of the aggregable object. Code
Table 6 contains C++ pseudocode for a preferred class definition S1 of an aggregable class with external in-
terfaces C and D. The class S1 inherits the abstract classes IC and ID. The implementations of the IC and ID
interfaces need not store a pointer to the derived class S1 to access the data member m_punkOuter, but a
special, non-inherited implementation of the IUnknown interface (IUnknownS1) is needed. Conversely, the im-
plementations of the IC and ID interfaces, as shown in Code Table 3, store the pointer to the derived class S1
in the data member m_p81. One skilled In the art would appreciated that other Iimplementations using inheri-
tance of interfaces are possible.

20

10

15

20

25

30

35

&5

class S1

{ public:

private:

EP 0 664 510 A2

Code Table 6

: public IC, public ID

virtual boolean Querylnterface (REFIID iid, void **ppv)
{ return m_punkOuter->Queryinterface(iid, ppv);}

virtual void AddRef()
{ m_punkOuter->AddRef);}

virtual void Release()
{ m_punkOuter->AddRef();}

/f implementation of IC and ID

class lUnknownS1 : public IUnknown

{
public:
IUnknownS1 (S1 *pSt)
{ m_pS1=pSl1;
m_refcount = 0;}

virual boolean Queryinterface (REFIID iid, void **ppv)

{ret = TRUE;

switch (iid)

{case 1ID_IUnknown:
*ppv = this;
AddRef();
break;

case lID_C:

*ppv =(IC *)m_pSI;
m_pS1->m_punkOuter->AddRef);
“break;

case [ID_D:
*ppv =(ID *)m_pS|;
m_pS1->m_punkQuter->AddRef();
break;

default:

21

10

15

20

25

30

35

-

EP 0 664 510 A2

ret = FALSE;
1N
}

virtual void AddRef() {m_refcount++;}
virtual void Release() {if (--m_refcount == 0) delete m_pS1;}

private:
int m_refcount;
St m_pS1;

}

friend [UnknownS|1;
IUnknownS1 m_[UnknownS1;’

public:
static void Createlnstance (IUnknown *punkOuter, [Unknown **ppunk)
{ S1 *pS1 = new S1(punkQuter),
pS1->QueryInterface(IID_Unknown, ppunk);
}

private:
void S1 (IUnknown *punkOuter) : m_[UnknownS 1(this)
{ if (punkOuter == NULL)
m_punkOuter = &m_I[UnknownS1;
eclse
m_punkOuter = punkQuter;

IUnknown m_punkQuter;

Dynamic Aggregation

In a preferred embediment of dynamic aggregation, interface instances are combined by adding them to
an enclosing object at any time after the creation of the enclosing object. In this manner, a new or changed
interface can be combined with an existing (base) object to alter the apparent behavior of the base object after
the code for the base object has been compiled or linked. That is, although the behavior of the base object (as
implemented by the methods of the base object) appears cutwardly to have changed, the methods Implement-
ing the behavior of the base object have not actually changed. The base object is enclosed within the enclosing
object and the new or changed interfaces are thereafter added.

When an external request is made to access to a particular interface, the enclosing object is responsible
for determining which interface to return and how to invoke the requested interface if more than one matching
interface exists. For example, if three IPrint interfaces exist in the aggregate object, the enclosing object de-
termines which IPrintinterface to return or whetherto return its own IPrintinterface, which knows how to invoke
a combination of the methods of the other |Print interfaces. The enclosing object can make this determination
either from a fixed or specifiable set of combining rules.

These combining rules can be used to override the standard behavior of an enclosed base object by pro-
viding access to a new implementation of a previously defined interface of the enclosed base object. These
rules can also be used to enhance the behavlor of an enclosed base object by adding capabilities not initially
defined as part of the enclosed base object. Both override and enhancement capabilities are provided by add-
ing a new or changed interface to the base object. In addition to these capabilities, a standard enclosing object
can implement default behaviors for enclosed objects (interfaces that implement methods to invoke if not pro-
vided for by the enclosed objects or added interfaces). Or, a standard enclosing cbject can implement con-
trolling (overriding) behavior for a method typically present for all enclosed objects (such as printing).

In a preferred embodiment, an object can be modified dynamically by allowing interface instances (imple-

22

10

15

20

25

30

35

55

EP 0 664 510 A2

mented by objects) to be aggregated together during the execution of a client program. The computer program
that instantiates an object is a client program. Aggregation is the process of combining the capabilities of sev-
eral distinct objects by enclosing their respective interfaces within an enclosing object. The enclasing abject
is then responsible for supporting access to all interfaces it wishes to expose through the enclosing object's
implementation of a controlling IlUnknown interface.

Static aggregation requires that the enclosing object have advance knowledge of the interfaces (objects)
it wishes to aggregate. Using static aggregation, a programmer decides, in advance, which of its aggregate
object interfaces the enclosing object should expose and then implements the Queryinterface method of the
controlling IlUnknown of the enclosing object to return pointers to these exposed interfaces when requested.
The Queryinterface method of the controlling IlUnknown accomplishes this task by maintaining references to
the corresponding IUnknown interfaces of the individual enclosed objects. (These references are created when
the enclosing object instantiates enclosed objects.) When a request is received for a reference to an exposed
interface of one of the enclosed objects, the Queryinterface method of the controlling IUnknown invokes the
corresponding lUnknown interface of the enclosed object to respond to the request. Because enclosed objects
have no knowledge of what interfaces the enclosing abject expases, all external requests received by an en-
closed object are passed on to the enclosing object, thereby enabling access to the interfaces defined in the
other enclosaed objects aggregated togsther.

The present invention also supports the dynamic aggregation of interfaces. In a preferred embodiment,
an enclosing object provides a method for registering instantiated interfaces and for later retrieving references
to them. In addition, when an interface is requested from the aggregate object, the present invention provides
a method for modifying the determination of which interface(s) to retrieve and how to invoke them in combin-
ation if more than one instance of the same interface is present in the aggregate object.

In a preferred embodiment, dynamic aggregation is implemented using a multitype object. A multitype ob-
ject is an object capable of aggregating objects of varying types, hence its name. Only interfaces that have
been coded such that they are capable of being aggregated can be enclosed within a multitype object. (That
is, for example, such interfaces can forward interface and reference counting requests to an enclosing object.)
A multitype object provides an IMultitype interface for requesting the aggregation of particular interfaces or
objects and for adding rules to determine how to invoke a requested interface. Code Table 7 contains pseu-
docode for a preferred definition of the IMultitype interface.

Code Table 7

class IMultiType: public IlUnknown {
virtual HRESULT AddObject (ULONG list, BOOLEAN headoflist,
IUnknown *punkobj) = 0;
virtual HRESULT AddInterface (REFIID iid, ULONG list, BOOLEAN headoflist,
void **ppv = 0;
virtual HRESULT AddRule (REFIID iid, IRULE *prule) = 0;
virtual Enum (ULONG i; REFIID iid, ULONG list, BOOLEAN headoflist;
void **ppv) = 0;

Figures 7A, 7B, and 7C are black diagrams of the sequence of adding two objects to a multitype object.
Figure 7Ais a block diagram of an instance of a multitype object. The object MTO 7A01 implements an exposed
interface, the IMultitype interface MT, and a controlling lUnknown. When an external interface is added to the
muititype object, the multitype object becomes an aggregate object The multitype abject implementation con-
tains three lists 7A02, 7A09, and 7A10 of interfaces it has added to the aggregation. The multitype object uses
these lists to invoke the various interfaces of its enclosed aggregate objects through the muiltitype object’'s
controlling lUnknown interface. The multitype object also contalns a list of rules 7A11 for accessing and com-
bining interfaces from the Interface lists 7A02, 7A09, and 7A10.

The interaction of these different lists gives the multitype object powerful capabilities. The list of rules
7A11, which can be fixed or specified using the AddRule method, specifies the interaction and use of the dif-
ferent interface lists for a particular interface. Hence, there can be rules for selecting other rules as well as
rules for selecting and combining particular interfaces. Three different interface lists 7A02, 7A09, and 7A10
are provided in order to support override, enhancement, default, and controlling capabilities. When an interface
is added to the multitype abject, the client program creating the aggregate specifies the list to be used in adding

23

10

15

20

25

30

35

55

EP 0 664 510 A2

the interface. List 7A02 comprises the normal list, list 7A09 comprises the default list, and list 7A10 comprises
the override list. Basically, the override list is intended implement override and controlling capabilities by point-
ing to interfaces that need to be accessed before the interfaces on the normal list. The default list is intended
to point to interfaces that are accessed only when the override and normal lists do not contain a requested
interface. The interaction of these lists is discussed in greater detail in the description of the |Rules interface.

Figure 7B is a block diagram illustrating the multitype object MTO after aggregating the IBasic interface
using the AddObject method. The AddObject method adds all of the interfaces of a specified object to a mul-
titype object. The aggregate object MTO 7B01 comprises the multitype interface discussed with reference to
Figure 7A and an enclosed spreadsheet object S1 7B04. The enclosed object S1 implements an instance of
the external interface IBasic (B), an instance of the external interface IPrint (P), and an instance of IUnknown.
(An external interface is an interface of an object that is exposed by an enclosing object. An internal interface
is an interface of an object that is not exposed by an enclosing object.) When the enclosed object S1 is added
to the normal list of the multitype object MTO, the normal list of aggregated interfaces 7B02 contains a single
element 7B03, which identifies the IUnknown interface of the enclosed object 81. The S1 IUnknown interface
returns pointers to the external interfaces B and P upon request. Because S1 is aggregatable, when S1 is in-
stantiated, it is passed a pointer 7B05 to the enclosing object MTO, which can be used subsequently to access
the other interfaces aggregated as part of object MTO.

Figure 7C is a block diagram illustrating the multitype object MTO of the result after adding the IDatabase
interface using the method AddObject. At this point, the aggregate object MTO 7C01 comprises the IMultitype
interface, discussed with reference to Figure 7A; an enclosed spreadsheet object 81, discussed with reference
to Figure 7B; and an enclosed database object S2 7C07, which implements database capabilities. The en-
closed object S2 implements an instance of the external interface IDatabase (D) and an instance of IUnknown.
When the snclosed cbject S2 is added to the multitype object MTO using the method AddObject of the |Mul-
titype interface, the normal list of aggregated interfaces 7C02 contains two elements 7C03 and 7C06. Element
7CO06 identifies the lUnknown interface of the enclosed object S2. Similar to S1, the S2 IUnknown interface
is able to return a pointer to the external interface D and contains a pointer 7C08 to the enclosing cbject MTO
for access to the other MTO interfaces.

One skilled in the art would recognize that many alternative embodiments of the data structures used to
keep track of the added interfaces and objects are possible. For example, one could vary the number and kind
of lists used. In particular, one could have only one list or make the override or default lists optional. Also, one
could require that each list element only point to the precise interface to be aggregated and not the lUnknown
of the object when an entire object is aggregated (only support an AddInterface style multitype object). Or, al-
ternatively, one could require that each list element point to the IlUnknown of the object regardless of what in-
terface is added to the aggregation (only support an AddObject style multitype object). In addition, one could
use other list Implementations Including various sorted lists or hash tables of interface Identifiers.

Code Table 8

void CreatelnstanceS1 (IUnknown *punkOuter, REFIID iid, void **ppv)
{ {Unknown *punk;

S1::Createlnstance (punkQuter, &punk);

punk->Queryinterface (iid, ppv),

punk->Release ();
}

class IBasic: public IUnknown

{ virtual void File) = 0;
virtual void Edit () = 0;
virtual void Formula () = 0;
virtual void Format () = 0;
virtual void GetCell () = 0;

H

class IPrint: public {Unknown

{ virtual void Print (void **ppobj) = 0;
}

10

15

20

25

30

35

55

EP 0 664 510 A2

class S1: public IUnknown

{
pubtie:

private:

static void Createlnstance(IUnknown *punkQuter, IUnknown **ppunk)

{

S1 *pS1 = new S1{punkQOuter);
pS1->QueryInterface(lID_IUnknown, ppunk);

void S1(IUnknown *punkQuter) : m_B(this), m_P(this)

{ if (punkOuter = NULL)
m_punkOuter = this;
else
m_punkOuter = punkOuter;
m_refcount = 0;
}
class B: public IBasic
{
public:
void B(S1 *pS1) {m_pS1 =pS1;}
virtual boolean QuerylInterface (REFIID iid, void **ppv)
{ return m_pS1->m_punkOuter->QueryInterface(iid, ppv);}
virtual void AddRef()
{ m_pS1->m_punkOuter->AddRef(); }
virtual void Release()
{ m_pS1->m_punkOuter->Release();}
// other methods of IBasic including File, Edit, Formula, Format, GetCell
private:
S1 *m_pSl;
}
friend B;
B m_B;

class P: public IPrint

public:

void P(S1 *pS1) {m_pS1 =pS1;}

virtual boolean QueryInterface (REFIID iid, void **ppv)
{ return m_pS1->m_punkOuter->QueryInterface(iid, ppv);}

virtual void AddRef()
{ m_pS1->m_punkOuter->AddRef();}

virtual void Release()
{ m_pS1->m_punkQuter->Release();}

// other methods of IPrint including Print

25

10

15

20

25

30

35

55

EP 0 664 510 A2

private:
Sl *m_pS1;
}
friend P;
P m_P;
public:
virtual boolean QueryInterface (REFIID iid, void **ppv)
{ ret = TRUE;
switch (iid) {
case [ID_B:
*ppv =&m_B,
m_punkOuter->AddRef();
break;
case I[ID_P:
*ppvy =&m_P;
m_punkOuter->AddRef();
break;
case I[ID_IUnknown:
*ppv = this;
AddRef();
break;
default:
ret= FALSE;
}
return ret;
}
virtual void AddRef(){ m_refcount++;}
virtual void Release() {if (--m_refcount == 0) delete this;}
private:
[Unknown *m_punkOuter;
int m_refcount;
}

Code Table 8 contains C++ pseudocode for a preferred class definition of the object S1 in Figures 7A-7C,
which can be enclosed in an aggregate (an aggregatable object) along with a global function that creates an
instance of the S1 abject. The classes lUnknown, IBasic, and IPrint are interfaces that define the methods of
each interface comprising S1. The class S1 implements the lUnknown interface, the IBasic interface, and the
IPrint interface. The IBasic and IPrint interfaces are implemented as external interfaces.

Figure 8 is a block diagram of the data structure layout of an instance of an object of class S1. Instance
structure 801 contains the data members of class S1 (m_B, m_P, m_punkOuter) and the virtual function table
pointer (S1::vfptr). The data members m_B and m_P are instances of objects of classes B and P, respectively
(which are class implementations of the interfaces iBasic and IPrint). Data members m_B and m_P are friends
of class S1, which allows m_B and m_P objects to access the private members of class S§1, such as m_pun-
kOuter. The virtual function table pointer S1::vfptr points to virtual function table 802, the virtual function table
pointer within data member m_B, S1::B::vfptr, points to virtual function table 803, and the virtual function table
pointer within data member m_P, S1::P::viptr, points to virtual function table 804. Virtual function table 802
contains pointers to the virtual functions (methods) defined for the controlling ilUnknown interface, virtual func-
tion table 803 contains pointers to the virtual functions defined for the IBasic interface, and virtual function
table 804 contains pointers to the virtual functions defined for the |Print interface. Methods 805 through 809
are the function membaers of class S1. Method 808 is the constructor for class S1. Method 809 is the Crea-
telnstance method for class S1. Methods 810 through 818 are the function members of class B. Method 813
is the constructor for class B. Methods 819 through 823 are the function members of class P. Method 823 is

26

10

18

20

25

30

35

585

EP 0 684 510 A2

the constructor for class P. Because Figure 8 shows an instance of an S1 object that is not part of an aggregate,
the data members S1::B::m_pS1, S1::P.:m_pS1, and S1.:m_punkOuter (pointers to the enclosing object) are
initialized to point to the S1 object itself.

The object S1 as defined by Code Table 8 conforms to the requirements for an aggregatable object dis-
cussed with reference to static aggregation. For the purposes of dynamic aggregation, Code Table Billustrates
how S1 can automatically communicate with its enclosing object when it is aggregated and what is returned
from the function S1::Querylnterface. Specifically, upon creation of an S1 object, a pointer to the controlling
IUnknown interface of an enclosing multitype object is passed to the method Createlnstance. This pointer is
then used by the Querylnterface methods of S1's external interfaces (IBasic and IPrint) to route interface re-
quests to the enclosing multitype object. When an S1 interface is requested from the enclosing multitype ob-
ject, the method Querylnterface of the controlling IlUnknown of the enclosing multitype object invokes the meth-
od S1::Querylnterface, which returns a pointer to the appropriate instance of the interface I1Basic, the interface
IPrint, or the interface IlUnknown and increments the S1 object’s reference counting appropriately. (The mech-
anism used by the enclosing multitype object to invoke S1::Querylnterface is discussed in detail below.)

One skilled in the art would recognize that many alternatives exist for passing to an aggregatable object
a pointer to the controlling lUnknown interface of an enclosing multitype object. Forexample, instead of passing
the pointer at creation time, a method can be defined specifically for passing this pointer. Using this embodi-
ment, an object can, once aggregated, be later unaggregated, or an object could later be aggregated into a
different enclosing object.

To understand how Code Table B intaracts with a multitype object as depicted in Figures 7A-7C, itis helpful
to see the calling sequence when client requests are made. Code Table 9 shows the pseudocode sequence
of calls corresponding to Figure 7C when a client application requests the IBasic interface when the client has
a pointer to the multitype object MTO. :

Code Table 9

MTO:: Querylnterface (IID_IBasic, ppv)

which finds an aggregated object that supports the iBasic interface
S1:: IUnknown:: QueryInterface (IID_[Basic, ppv)
which returns pointer to the B interface

In the first call (MTO::Querylnterface), MTO determines from its lists of aggregated interfaces which object’s
Querylnterface method to invoke and then invokes it in the second call (S1::lUnknown::Querylnterface).

Code Table 10 shows how the pseudocode sequence of calls varies if the client application has a pointer
to one of the enclosed object's interfaces (such as the IPrintinterface of S1) instead of a pointer to the enclosing
multitype object.

Code Table 10

P::Queryinterface (11D_[Basic, ppv)
which forwards the call to the enclosing object
MTO:: IUnknown:: QueryInterface (IID_IBasic, ppv)
// m_punkOuter points to MTO:: IUnknown
which finds an aggregated object that supports the [Basic interface
S1:: [Unknown:: QueryInterface (fID_IBasic, ppv)
which returns pointer to the B interface

Code Table 10 demonstratas how aggregation will automatically forward requests to the enclosing object in
order to access other interfaces within the aggregate. In this case, the Querylinterface function of the enclosed
object forwards the request to the enclosing object's (MTO's) Queryinterface method. Then, the MTO::Quer-
ylnterface method functions as in Code Table 9.

The S2 abject that implements the IDatabase interface is analogous to the S1 cbject as described above.

27

10

18

20

25

30

35

55

EP 0 664 510 A2

Code Table 11

void CreatelnstanceMTO (IUnknown *punkOuter, REFIID iid, void **ppv)
{ IUnknown *punk;

MTO::Createlnstance (punkQuter, &punk);

punk->Query Interface (iid, ppv);

punk->Release ();
H

class IMultitype: public IUnknown
{ virtual HRESULT AddObject (ULONG list, BOOLEAN headoflist,
IUnknown *punkobj) = 0;
virtual HRESULT AddInterface (REFIID iid, ULONG list, BOOLEAN headoflist,
void *pv) = 0;
virtual HRESULT AddRule (REFIID iid, IRule *prule) = 0;
virtual HRESULT Enum (ULONG i, REFIID iid, ULONG list, BOOLEAN headoflist,
void **ppv) =0;
}

class MTO: public [Unknown
{
public:
static void Createlnstance(IUnknown *punkOuter, [Unknown **ppunk)
{ MTO *pMTO = new MTO(punkOuter);
pMTO->Querylnterface(IID_IUnknown, ppunk);}

private:
void MTO(IUnknown *punkOuter): m_MT(this)
{ if (punkOuter = NULL)
m_punkOuter = this;
clse
m_punkQOuter = punkOuter;}

class MT: public IMultitype

public:
void MT(MTO *pMTO) {m_pMTO = pMTO}

virtual boolean Querylnterface (REFLID iid, void **ppv)
{ return m_pMTO->m_punkOuter->Querylnterface(iid, ppv);}

virtual void AddRef()
{ m_pMTO->m_punkQuter->AddRef);}

virtual void Release()
{ m_pMTO->m_punkOuter->Release();}

virtual boolean AddObject (ULONG list, BOOLEAN headoflist,
[Unknown *punkobj)

28

10

18

20

25

30

35

55

EP 0 664 510 A2

{ item *pitem;
pitem = new (item);
pitem->iid = [ID_Unknown;
pitem->pobj = punkobj;
pitem->pnext = null;
pitem->pprev = null;
switch (list) {
case NORMAL_LIST:
/1 ... if headoflist = = true, insert as first item in normal list,
// otherwise insert as last item;
case DEFAULT_LIST:
/1 ... if headoflist = = true, insert as first item in default list,
// otherwise insert as last item;
case OVERRIDE_LIST:
// ... if headoflist = = true, insert as first item in override list,
// otherwise insert as last item;

default:
/! ... insert at head of normal list;
} -
}
virtual boolean AddInterface (REFIID i_id, ULONG list, BOOLEAN headoflist,
void *pv)
{ v
pitem->iid = iid;
pitem->pobj = pv;
// same code as for AddObject method except that list item points to
// the particular interface and not to the IUnknown interface
}

W\ other methods of IMultitype . . .

private:
MTO *m_pMTO;
bY
friend MT;
MT m_MT;
public:
virtual boolean QueryInterface(REFIID iid, void **ppv)
{ boolean done = TRUE;
item *pitem;

switch (iid) {

case IID_IMultiType:
*ppv = &m_MT;
m_punkOuter->AddRef);
break;

case IID_[Unknown:
*ppv = this;
AddRef();
break;

defaulit:
// search through the override list for the first matching interface

10

13

20

25

30

35

55

EP 0 664 510 A2

done = FALSE;
pitem = m_poverride_itemhead;
while ((done == FALSE) && (pitem->pnext != null)) {
switch (pitem->iid) {
case 1ID_IUnknown:
if (pitem->pobj->Querylnterface(iid, ppv) = = TRUE)

done = TRUE;
clse pitem = pitem->pnext;
break;
default:

if (pitem->iid == iid) {
ppyY = pitem->pobj;
done = TRUE;

}

else pitemn = pitem->pnext;

// search through the normal list for the first matching interface
// if not yet found
if (done = = FALSE) {
pitem = m_pnormail _itemhead;
while ((done = = FALSE) && (pitem->pnext != null)) {
... // same code as for override list
}
// search through the default list for the first matching interface
/I if not yet found
if (done = = FALSE) {
pitem = m_pdefault_itemhead;
while ((done = = FALSE) && (pitem->pnext != null)) {
... // same code as for override list
}

break;
}

return done;

}
virtual void AddRef{) { m_refcount++;}

virtual void Release() {if (--m_refcount = = 0) delete this;}

private:
IUnknown *m_punkOuter;
int m_refcount, m_occurrence;
struct item {
' REFIID iid;
void *pob;j;

item *pnext;
item *pprev };

item *m_pnormal_jtemhead = null, *m_pnormal_itemtail = null,
*m_pdefault_itemhead = null, *m_pdefaunlt_itemtail = null,
*m_poverride_itemhead = null, *m _poverride_itemtail = null;
b

Code Table 11 is C++ pseudocode for a preferred class definition of a multitype object which can be used
to dynamically aggregate interfaces. The class MTO implements an instance of the IMultitype interface and
the controlling lUnknown interface for the multitype object.

The global function CreatelnstanceMTO creates an instance of an object of class MTO. A client invokes

30

10

18

20

25

30

35

55

EP 0 664 510 A2

this function to instantiate an object of class MTO. Using this function, a client can instantiate an object of class
MTO without having access to the MTO class definition at compile time or run time. The function Createln-
stanceMTO is passed a pointer to the controlling IlUnknown interface (punkOuter) when the instantiated MTO
object is aggregated within another object. The function invokes the method MTO::Createlnstance passing
along the parameter punkOuter.

The method MTO::Createlnstance instantiates an MTO object and returns a pointer (ppunk) to the IUn-
known interface of the MTO object. This interface can then be used by the function CreatelnstanceMTO to
return the interface actually requested by the client application. The method MTO::Createlnstance uses the
operator new to instantiate the MTO object. During instantiation, the constructor MTO::MTO is invoked and
passed the value of the parameter punkOuter.

The constructor MTO::MTO initializes the data members m_MT and m_punkOQuter. During instantiation of
the data member m_MT of class MT, the constructor MT.:MT is invoked and passed the this pointer for the
MTO object. (In C++, the this pointer points to the object instance itself.) The constructor MT::MT then sets a
local variable pointing back to the MTO class. The constructor MTO::MTO is passed the parameter punkOuter.
If the value of punkQuter is null, the constructor MTO::MTO sets the data member m_punkOuter to paint to
the newly instantiated MTO object. If, on the other hand, punkOuter is non-null, for example, if the object is
aggregated as part of a larger aggregation, the canstructor MTO::MTO sets the data member m_punkOuter
to the value of the parameter punkOuter. That is, data member m_punkOuter points to the value of the con-
trolling IUnknown interface of the aggregate when the MTQ object is enclosed and points to the IUnknown in-
terface of the MTO object when the MTO object is not enclosed.

The IMultitype interface implemented by the MTO abject contains four methods AddObject, Addinterface,
AddRule, and Enum. The method AddObject is responsible for adding an object to be enclosed within the mul-
titype object (all of the object's interfaces are made accessible). It is discussed with reference to Figure 9. The
method Addinterface is responsible for adding a single interface instance to the multitype object. The method
Addinterface is discussed in conjunction with the method AddObject. The method AddRule enables a client
application to specify a combining rule used to determine which combination of objects to query or interfaces
to return when a client application requests a particular interface identifier. It is discussed in detail in conjunc-
tion with rule objects. The method Enum is used by rule objects to enumerate over the various interface lists
maintained by the multitype object. This method is discussed in detail in conjunction with rule objects.

Figure 9 is a flow diagram of the method AddObject of the IMultitype interface implemented by a multitype
object. Figure 9 corresponds to the code for AddObject shown in Code Table 11. The method AddObject is used
by a dient application to dynamically add to a multitype object access to all of the interfaces of an object. This
method is passed a list indicator indicating to which list to add the object, an indication of whether the object
should be added to the head or tail of the specified list, and a pointer to the IlUnknown interface of the object
to aggregate. This method, along with the method Addinterface, implements structures for maintalning infor-
mation regarding the objects and interfaces enclosed by a multitype object.

One typical implementation uses three list structures composed of elements each pointing to an interface
of an enclosed object. When the method AddObject Is Invoked to enclose the entire object, a new element is
added to the specified list structure; the new element points to the [lUnknown interface of the enclased object.
This IUnknown interface can then be used to access the component interfaces of the enclosed object. If, on
the other hand, the method Addinterface Is Invoked to enclose a single Interface of an object, then a new list
element is added to the specified list structure; the new slement points to the single interface to allow direct
access to it. In a typical implementation, each list element is indexed by an interface identifier, points to an
interface of an enclosed object, and points to the next element in the list. Since clients can add to either the
head or tail of a list, a doubly linked list can be used to increase the efficiency.

In the method invocation, a client application specifies on which list the application wants to add the spe-
cified interface or object. A "normal” list is used when the client application wants to simply add interfaces or
objects to the aggregation. An "override" list and a "default” list are used when the client application wants to
add Interfaces whose methods will be invoked at a different time than those on the normal list. In a typical
implementation, upon request for a particul ar interface, the method Querylinterface of the controlling IUnknown
of the multitype object will return the requested interface searching first through the override list, second
through the normal list and third through the default list. One skilled in the art would recognize that many other
implementations and search strategies are possibly including varying the number of list structures, changing
the search order, and changing the determination of what constitutes matching a requested interface. In a pre-
ferred embodiment, as discussed in detail below, the client application may change the determination rules.

The steps of Figure 9 illustrate how an element is added to the specified list. In step 901, the method al-
locates a new list item and, in step 902, initializes the item to point to the IlUnknown interface of the object con-
taining the interfaces the client application desires to aggregate and to contain the interface identifier of the

31

10

18

20

25

30

35

55

EP 0 664 510 A2

item (to indicate the IlUnknown interface). In step 903, the method determines whether the normal list has been
specified. If so, the method continues at step 904, else it continues at step 907. In step 904, the method de-
termines whether the client application wants to insert an element at the head of the normal list. If so, the meth-
od continues at step 905, else it continues at step 806. In step 905, the method inserts the initialized element
at the head of the normal list and returns. In step 906, the method inserts the initialized element at the tail of
the normal list and returns. Steps 907 through 914 operate analogously on the override and default lists.

The method Addinterface of the IMultitype interface works similarly to the method AddObject. The primary
difference is that, instead of an added list element pointing to the specified IUnknown interface of the object
to be enclosed, the added list element points to a specified interface and indicates the passed interface iden-
tifier. In this manner, a single interface of an object can be aggregated without exposing other interfaces.

Returning to Code Table 11, the methods Querylnterface, AddRef, and Release of the IMultitype interface
(the inherited IUnknown interface) forward requests to the IlUnknown interface of the parent object that imple-
ments this IMultitype interface (MTO).

The controlling IlUnknown interface implemented by the MTO object contains the methods Querylnterface,
AddRef, and Release. The methods AddRef and Release implement reference counting of the multitype object.
When the reference count is zero, the MTO object is deleted.

Figure 10 is a flow diagram of the method QueryInterface of the controlling IUnknown interface for a mul-
titype object. Figure 10 corresponds to the code for Querylnterface shown in Code Table 11. The method Quer-
yinterface locates a requested interface using knowledge of its own implementation and information from the
aggregated interface lists. The method takes an input parameter which is the requested interface identifier
and outputs a pointer to the requested interface. In steps 1001-1004, the method determines whether the re-
quested interface is one implemented by the multitype object itself. Otherwise, in steps 1005-1014, the method
searches each enclosed object or interface until it finds the requested interface.

In step 1001, the method determines whether the requested interface identifier is equivalent to IID_IMul-
titype, and if itis, continues at step 1002, else continues at step 1003. In step 1002, the method sets the cutput
parameter to point to the instance of IMultitype implemented by the object MTO, and returns. In step 1003,
the method determines whether the requested interface identifier is equivalent to liD_lUnknown and, if it is,
continues at step 1004, else it continues at step 1005. In step 1004, the method sets the output parameter to
the this pointer, which is the instance of IlUnknown implemented by the muiltitype object, and returns.

In steps 1005 through 1014, the method loops over the three lists searching for the first list element that
points to an interface matching the requested interface. When this interface is found, it is returned in the para-
meter ppv and the method returns a successful status. One skilled in the art would recognize that this imple-
mentation is one example of many types of searches that can be used. In step 1006, a temporary list indicator
is set to the next list from the set of lists implemented by a muititype object. In a preferred embodiment, this
set of lists includes an override, a normal, and a defaultlist. In step 1006, the method sets a temporary variable
pitem to point to the frant of the current list. In step 1007, the method determines whether it has exhausted all
of the elements in the current list and has still not found a matching interface. If the method has reached the
end of the current list, then the method continues at step 1008, else It contlnues at step 1009. In step 1008, If
the method determines that more lists are available to be searched, then the method continues back at step
1005 to begin searching a new list. Otherwise, the method returns an unsuccessful status since na matching
Interface was found. In step 1009, the method determines whether the current list element, pointed to by the
temporary variable pitern, points to an I[Unknown interface, and if it does continues at step 1010, else it con-
tinues at step 1013. (If the current list element points to an lUnknown interface, then the abject corresponding
to this interface needs to be further queried for a matching interface.) In step 1010, the method calls the method
Queryinterface of the lUnknown interface pointed to by the current list element. In step 1011, the method de-
termines whether the requested interface identifier was found and, if not, continues at step 1012, else returns.
If the requested interface identifier was found, then the Querylnterface call would have already set the return
parameter ppv to point to the requested interface. In that case, the method returns a successful status. Other-
wise, in step 1012, the method Increments the current list element pointer (pitem) to point to the next element
in the list and continues at step 1007 to search through the current list structure. In step 1013, the method
compares the requested interface identifier with the interface identification field of the current list element and,
if they are the same, continues at step 1014, else continues at step 1012 with the search. In step 1014, the
method sets the return parameter ppv to point to the requested interface (pointed to by the current list element)
and returns a successful status.

Figure 11 is a block diagram showing the data structure layout of a multitype object, coresponding to Fig-
ure 7C, after the |Basic, IPrint, and IDatabase interfaces have been dynamically aggregated using the method
AddObject. The data structure layout comprises instance data 1101, virtual function tables 1104 and 1105,
methods 1107 through 1115, and instances of currently enclosed (aggregated objects). The instance data 1101

32

10

15

20

25

30

35

55

EP 0 664 510 A2

contains a pointer to the virtual function table for the contralling IUnknown interface, data member m_MT which
is an instance of class MT (an implementation of the IMultitype interface), data member m_punkOuter which
points to the IlUnknown interface of the MTO object, and data member m_pnormal_itemhead which points to
the head of the normal list of currently added interfaces. As depicted, the list currently contains two elements.
List element 1102 points to an instance of an S1 object 801-823 (as defined in Figure 8) and list element 1103
points to an instance of an S2 object 1106. Although not shown, the muiltiple object also contains pointers to
a default list and an override list, which are empty.

When the enclosed S1 object is instantiated, its data member S1::m_punkOuter is initialized to point to
the IlUnknown interface of the MTO object. Similarly, when the enclosed S2 object is instantiated, its data mem-
ber S2::m_punkOuter is initialized to point to the IUnknown interface of the MTO object. This task is accom-
plished, as previously discussed, by passing a pointer to MTO in the CreatelnstanceXX function (where XX is
S1 or S2).

MTO *pMTO;

IMultiType *my_pMT;

[Unknown *pSpreadSheet, *pDataBase;

CreatelnstanceMTO (NULL, 1ID_{Unknown, pMTO);

CreatelnstanceS1 (pMTO, LID_IUnknown, pSpreadSheet);

CreateinstanceS2 (pMTO, [ID_IUnknown, pDataBase),

pMTO->QueryInterface (IID_Multitype, my_pMT);

my_pMT->AddObject (IID_ISpreadSheet, NORMAL_LIST, true, pSpreadSheet)

my_pMT->AddObject (IID_I[DataBase, NORMAL_LIST, true, pDataBase);

// Some later time, some other client can invoke the database capability of a spreadsheet object
pSpreadSheet -> QueryInterface(IID_IDataBase, ppv);
ppv->DataQ);

Code Table 12 contains pseudocode for the preferred list of steps for dynamically aggregating a set of in-
terfaces. This example corresponds to adding the interfaces for IBasic, IPrint, and IDatabase as shown in Fig-
ure 7C using the method AddObject to add all of the interfaces of an object. First, a new multitype object is
allocated using the function CreatelnstanceMTO. Using this function, the IlUnknown interface is retrieved for
the newly instantiated multitype object. This interface is passed to the S1 and S2 objects when they are in-
stantiated to allow them to access the enclosing multitype cbject. At some point, an instance of the S1 object
is created, passing it the pointer to the multitype object. Also, an instance of the S2 database object is created,
passing it a pointer to the multitype object. Afterthese instances of S1 and S2 have been created, the IMultitype
interface is retrieved from the multitype object. This interface will be used to dynamically add the spreadsheet
and database interfaces to the multitype object. Next, the method AddObject of the IMulititype interface of the
multitype object is invoked to aggregate the S1 and S2 objects into the multitype object. Once these objects
have been enclosed in the multitype object, a client can use any interface of the multitype object or any of its
enclosed objects to access any other interface within the aggregate object. Code Table 12 shows an example
of retrieving the database interface using the basic spreadsheet object (S1) and then invoking the data method
of this IDatabase interface.

10

15

20

25

30

386

55

EP 0 664 510 A2

Code Table 13

class IMultitype: public IUnknown .
{ virtual HRESULT AddObject (ULONG list, BOOLEAN headoflist,
IUnknown *punkobj) = 0;
virtual HRESULT AddlInterface (REFIID iid, ULONG list, BOOLEAN headoflist,
void *pv) = 0;
virtual HRESULT AddRule (REFIID iid, IRule *prule) = 0;
virtual HRESULT Enum (ULONG i, REFIID iid, ULONG list, BOOLEAN headoflist,
void **ppv) = 0;
}
class IRule: public [Unknown
{ virtual HRESULT Init (IMultitype *pMTO) = 0;
}

class MTO: public IlUnknown

10

15

20

25

30

35

55

EP 0 664 510 A2

{
public:
static void Createlnstance(IUnknown *punkOuter, lUnknown **ppunk)
{ MTO *pMTO = new MTO(punkQuter);
pMTO->QueryInterface(11D_IUnknown, ppunk);}
private:

void MTO(IUnknown *punkOuter) : m_MT(this)
{ if (punkOuter == NULL)
m_punkOQuter = this;
else
m_punkOuter = punkOuter;
pQI = new(MyQl); /f make a QueryInterface default rule
pQI->QueryInterface(1ID_IRule, prule);
m_MT->AddRule(IID_IUnknown, prule);
}

class MT: public IMultitype
{
public:
void MT(MTO *pMTO) {m_pMTO = pMTO}

virmal HRESULT Queryinterface (REFIID iid, void **ppv)
{ return m_pMTO->m_punkQuter->QueryInterface(iid, ppv);}

virtual void AddRef{)
{ m_pMTO->m_punkOuter->AddRef();}

virtual void Release()
{ m_pMTO->m_punkOQuter->Release();}

virtual HRESULT AddObject (ULONG list, BOOLEAN headoflist,
[Unknown *punkobj)
{ item *pitem;
pitem = new (item);
pitem->iid = [ID_IUnknown;
pitem->pobj = punkobj;
pitem->pnext = null
pitem->pprev = null;
switch (list) {
case NORMAL_LIST:
/7 ... if headoflist = = true, insert as first item in normal list,
// otherwise insert as last item;
case DEFAULT_LIST:
/f ... if headoflist = = true, insert as first item in default list,
// otherwise insert as last item;
case OVERRIDE_LIST:
/! ... if headoflist = = true, insert as first item in override list,
/! otherwise insert as last item;
default:
// ... insert at head of normal list;

}

virtual HRESULT AddInterface (REFIID iid, ULONG list, BOOLEAN headoflist,

35

10

18

20

25

30

35

56

&&

EP 0 664 510 A2

void *pv)
{ ces
pitem->iid = iid;
pitem->pobj = pv;
// same code as for AddObject method except that list item points to
// the particular interface and not to the IlUnknown interface
}

virtual HRESULT AddRule (REFIID iid, IRule *prule)
// this method adds a rule object to the list of rules in the multitype object
{ ruleitem *pruleitem;

pruleitem = new(ruleitem);

pruleitem->iid = iid;

pruleitem->prule = prule;

pruleitem->pnext = null;

pruleitem->pprev = null;

// insert in the rule list -- one way to do this is to insert the rule as last item
// so QueryInterface is always first

prule->Init(m_pMTO); // tell the rule about the multitype object
}

virtual HRESULT Enum (ULONG i, REFIID iid, ULONG list, BOOLEAN headoflist,
void **ppv)
// this method returns the i'th occurrence of the ¢lement corresponding to the
// specified iid in the specified list beginning with the head or tail of the list
{ int counter =0,
item *pitem = null;
ruleitem *pruleitem = nuil;
boolean done = FALSE,;

switch (list) {
case NORMAL _LIST:
if (headoflist) {

pitem = m_pMTO->m_pnormal_itemhead;

while ((!done) && (pitem ! = null)) {)
// for each item in the list, compare either the pobj field if the
// item points to an interface that has been added or query
// imerface the object to see if the interface exists if the entire
// object has been added
switch (pitem->iid) {

case [ID_[Unknown:
if ((pitem->pobj->Queryinterface(iid, ppv) = = TRUE)

(counter == i)) done = TRUE;
else pitem=pitem->pnext;

break;
default:
if ((pitem->iid = = iid) && (counter = = 1)) {
done = TRUE;

ppVv = pitem->pobj;
} else pitem = pitem-> pnext;
break;

36

10

18

20

25

30

35

55

EP 0 664 510 A2

h

else { /f ... start from tail and work backwards using
// pitem = pitem->pprev;
b
break;
case DEFAULT_LIST:
// works the same as the normal list except uses the default list
break;
case OVERRIDE_LIST:
7/ works the same as the normal list except uses the override list
break;
case RULE_LIST:
if (headoflist) {
pruleitem =m_pMTO->m_prule_ijtemhead;
done = FALSE;
while ((!done) && (pruleitem ! = null)) {
if pruleitem->iid = = iid {
ppv = pruleitem->prule;
done = TRUE;
} else pruleitem = pruleitem->pnext; }
}else { //.. start from tail and work backwards using
// pruleitem = pruleitem->pprev;

5
break;
default:
// use the same steps as for the normal list starting from the head
}
}
private:
MTQ *m_pMTO;
IH /! end of class definition for MT objcct
friend MT; :

MT m_MT,;

public:
virtual HRESULT QueryInterface(REFIID iid, void **ppv)
{ IRule *pruie;
ruleitem *pruleitmem;
boolean done = TRUE, foundrule = FALSE;
switch (iid) {
case 1ID_IMultiType:
“ppv =&m_MT;
m_punkQOuter->AddRef();
break;
case IID_IUnknown:
*ppv = this;
AddRef();
break;
default:
done = FALSE;
// search through the rule list for the first matching [Unknown interface
/f and invoke it as the selection rule to access the combining rule for the

37

10

15

20

25

30

35

55

ppv)

private:

EP 0 664 510 A2

// requested interface
pruleitem = m_prule_itemhead;
while ((foundrule = = FALSE) && (pruleitem ! = null)) {

if pruleitem->iid = = IID_IUnknown {
prule = pruleitem->prule;
foundrule = TRUE;

} else pruleitem = pruleitem->pnext;

}
if (foundrule) { // get and call its QueryInterface method

}
else {
}
break;
}
return done;

}

prule-> QueryInterface(IID_IUnknown, pselect);
done = pselect-> Querylnterface(iid, ppv);

// find the combining rule on the rule list and return it if it exists
// this code is the default selection rule if one is not provided
pruleitem = m_prule_itemhead;
foundrule = FALSE;
while ((foundrule = = FALSE) && (pruleitem ! = null)) {
if pruleitem->iid = = iid {
prule = pruleitem->prule;
foundrule = TRUE;
} else prulcitem = pruleitem->pnext;

}
if (foundrule) { // find the requested interface and return it
prule-> Querylinterface(iid, ppv);
else // no combining rule exists so just retun 1st interface found
done = FALSE;
// search through all lists for the first matching interface
if ((m_MT->Enum(1, iid, OVERRIDE_LIST, true, ppv))
== FALSE) {done = TRUE };
else if ((m_MT->Enum(], iid, NORMAL LIST, true, ppv))
== TRUE) { dane = TRUE };
else if ((m_MT->Enum(l, iid, DEFAULT_LIST, true,

==TRUE) { done = TRUE };

virtual void AddRef() { m_refcount++;}

virtual void Release() {if (--m_refcount = 0) delete this;}

1Unknown *m_punkOuter;
int m_refcount;
struct item {

REFIID iid;

void *pobj;

item *pnext;

item *pprev };

item *m_pnormal_itemhead = null, *m_pnormal_itemtail = null,

38

10

15

20

25

30

35

55

EP 0 664 510 A2

*m_pdefault_itemhead = null, *m_pdefault_itemtail = null,
*m_poverride_itemhead = null, *m_poverride_itemtail = null;

struct ruleitem {
REFIID iid;
IRule “*prule
ruleitem *pnext
ruleitem *pprev };

ruleitem *m_prule_itemhead = null, *m_prule_itemtail = null;
}; // end of class definition for MTO object

class MyQI: public [Unknown
{
private:
void MyQI: m R(this) {any other initialization code }

class R: public IRule
{
public:
void R(MyQI *pMyQI) {m_pMyQI = pMyQI) }

// ... ITUnknown methods are also implemented here which call the controlling
// [Unknown methods for the enclosing object (public methods shown below)

virtual HRESULT Init (IMultitype® pMTO) {m_pMyQI->m_pMTO = pMTO}
private:

MyQl *m_pMyQI;
Y //end of class R definition

friend R;
R m_R;

int m_refcount;
TMultitype *m_pMTO,;

public:
virmal HRESULT Queryinterface (REFIID iid, void **ppv)
{ IRule *prule;
boolean done = TRUE, foundrule = FALSE;

switch (iid) {

case [ID_IRule:
*ppv =& m_R;
AddRef();
break;

case [ID_IUnknown:
*ppv = this;
AddRef{);
break;

default: // this is the same as code for our default rule for IUnknown
// that knows how to search the lists of an MTO object

39

10

15

20

25

30

35

55

EP 0 664 510 A2

foundrule = m_pMTO->Enum(|, iid, RULE_LIST, true, prule);
if (foundrule) // return the combining rule for the
requested 1ID
{prule-> QuerylInterface(iid, ppv);}
else { //no combining rule exists so just return Ist interface found
done = FALSE;
// search through all lists for the first matching interface
if ((m_pMTO->Enum(l, iid, OVERRIDE_LIST, true, ppv))
== TRUE) {done = TRUE };)
else if ((m_pMTO->Enum(l, iid, NORMAL LIST, true,
ppv)) = = TRUE) { done = TRUE };
else if ((m_pMTO->Enum(l, iid, DEFAULT_LIST, true,
ppv)) = = TRUE) { done = TRUE };

break;
b
return done;

}
virtual void AddRef() { m_refcount++;}
virtual void Release() {if (—m_refcount = 0) delete this;}

b

Code Table 13 contains C++ pseudocode for a preferred class definition for a multitype object that has
been enhanced to support a list of rule objects. Recall that these rule objects can either contain combining
rules for combining requested interfaces of a multitype object or a selection rule for selecting a rule object (con-
taining a combining rule) from the list of rule objects. Each rule object implements an instance of the IRules
interface for hooking the rule object into a multitype object. Each rule object also implements an instance of
the interface for which the rule object is providing a combining rule. For example, to coordinate printing all of
the enclosed aggregated objects, a rule object that implements a combining rule for the IPrint interface can
be provided. Such a rule object contains an implementation of the IRules interface and an implementation of
the IPrint interface. This specific example is discussed further below with reference to Code Table 14.

Code Table 13 also shows C++ pseudocode for a preferred class definition for a rule object that contains
a selection rule for selecting rule objects from a list of rule objects. To simplify the example, the rule provided
by this rule object is similar to the default code used by a multitype object to access rule objects from the list
of rule objects (as defined by MTO::Querylnterface). However, one skilled in the art would recognize that this
selecting rule object could implement any rule for accessing rule objects.

As shown in Code Table 13, a multitype object implements two interfaces, IMultitype and lUnknown. These
interfaces are essentially the same as those described in Code Table 11, except, as noted in the following de-
scription. The fundamental change from Code Table 11 shown in Code Table 13 is that the methad Queryin-
terface of the controlling IUnknown (MTO::Querylnterface) no langer searches through the three lists of en-
closed interfaces for a matching interface according to a fixed set of rules. (The fixed rules shown in Figure
11 amount to returning the first found interface from among the override, normal, and default lists in that order.)
Instead, once it determines that an interface is requested that is not implemented by the MTO object itself,
MTOQO::Querylnterface defers the request to a rule object corresponding to the requested interface, if one exists
on the MTO object’s list of rule objects. The found rule object is then responsible for either providing an im-
plementation of the requested interface or returning an interface from the MTO object’s three lists of aggre-
gated interfaces. Thus, a client application can change the behavior of method Querylnterface of the controlling
IUnknown of the aggregated object by providing its own rule objects for retrieving or combining particular in-
terfaces. These rule objects can be implemented independent of the implementation of the multitype object
because they can use a public enumeration method provided by the multitype object to access the enclosed
interface and rule lists. In addition, a client application can change the selection rule used by MTO::Querylin-
terface for finding the rule object corresponding to the requested interface by providing a rule object for the
IUnknown interface.

40

10

18

20

25

30

35

&5

EP 0 664 510 A2

In addition to the methods AddObject and Addinterface already described with reference to Code Table
11, the class MTO provides two methads for handling rule objects: AddRule and Enum. The method AddRule
performs similarly to Addinterface. The method AddRule creates a new list item for the list of rule objects and
initializes this item to point to the interface identifier and the IRule interface of the rule object passed as input
parameters. The method then inserts the new list item in the list of rule objects and invokes the method !nit
of the IRule interface pointed to by the new list item in order to give the rule object access back to the MTO
object. Such access is used by the rule object to invoke the method Enum to access the other lists of interfaces.

As shown, the method AddRule adds a new rule object to the end of the list of rule objects. In addition,
the Queryinterface methods using the list of rule objects assume that there is only one rule object per interface
identifier (or that rather the first one found is valid). Therefore, some error checking or order control is preferably
implemented. One skilled in the art will recognize that, like the other enclosed interface lists, a new rule object
could be inserted into either the head or the tail of the list. Also, the method AddRule could be changed to pass
in a parameter indicating where to add the new rule object similar to AddObject and Addinterface. Alternatively,
the rule list items could be implemented identically to the other list items and the method AddiInterface could
be used to insert rule objects into the list of rule objects. One skilled in the art would recognize that many other
techniques are possible and that, in an abstract sense, rule objects are also dynamically aggregated objects.

The class MTO provides the method Enum for searching and retrieving a specified interface. Rule objects
for combining rules can use this method to retrieve interfaces from the three aggregated interface lists. In ad-
dition, rule objects for selecting combining rules can use this method to retrieve rule object IRule interfaces
from the list of rule objects. As shown, the method Enum returns the i'th occurrence of an interface matching
a requested interface identifier from a specified list. The method starts from the head or tail of the list as spe-
cified in the invocation. In an alternate embodiment, the enumerator is implemented as four separate methods:
one per list enumerated.

For the normal, default, and overrids lists, the method Enum examines each list item from the specified
list until it finds the requested interface identifier or it exhausts the items in the list. During examination, if a
list item points to an entire object, then the method Enum invokes the method Querylnterface of the object
pointed to by the list item to potentially retrieve and return the requested interface. Otherwise, if the list item
points to an interface other than 1lUnknown, the interface identifier pointed to by the list item is compared di-
rectly to the interface identifier requested, and, ifthey match, the interface pointed to by the listitem is returned.
If a list item fails to produce a matching interface, then the method continues to search the remainder of the
specified list.

The methad Enum provides slightly different behavior for searching and retrieving from the list of rule ob-
jects. Instead of returning the requested interface identifier, the method uses the interface identifier to find a
matching item on the list of rule objects and then returns a pointer to the IRule interface of the rule object cor-
responding to the requested Interface identifier.

In Code Table 13, the method Querylnterface of the MTO enclosing object has been modified to support
the list of rule objects. The methaod first determines whether the interface requested in an input parameter is
implemented by the MTO object itself. If so, the method returns this interface. Otherwise, the method retrieves
and invokes a selecting rule if one exists on the list of rule objects. Finally, if no selecting rule exists, the method
Querylinterface provides default selection code.

Arule object provides a selecting rule if it is added to the list of rule objects under the IlUnknown interface
identifier. Preferably, this interface identifier is reserved for this purpose. In one embadiment, the first such
rule object found is retrieved as the selscting rule. If it exists, the retrieved selecting rule is responsible for
searching for and retrieving a combining rule or, if no combining rule exists, searching for and retrieving an
interface from the three lists of aggregated interfaces. The retrieved selecting rule is invoked by querying the
rule object corresponding to the IUnknown interface identifier for its IUnknown interface (using the IRule in-
terface) and then invoking the method Querylnterface of this retrieved IUnknown interface. Note that the re-
trieved IUnknown interface is the controlling IUnknown interface of the rule object.

If no selecting rule exists, the method MTO::Querylnterface provides default selection code. This default
selection code returns a combining rule for the requested interface if one exists, or returns the first matching
interface found from the normal, override, and default lists in that order. (The default selection code when no
combination rule exists behaves similarly to the method MTO::Queryinterface.) The rule object Implementing
the combining rule is then responsible for either providing an implementation of the requested interface or re-
turning an interface from the MTO object’s thres lists of aggregated interfaces.

As an example, Code Table 13 lllustrates an implementation for a rule object that provides a selection rule
for selecting rule objects from the list of rule objects. Class MyQl is a rule object implementing an iRule inter-
face and an lUnknown interface. For ease of understanding, class MyQl is shown as a non-aggregatable object.
The IRule interface provides a method Init, for maintaining a pointer to the enclosing muititype object (MTO)

41

10

15

20

25

30

35

55

EP 0 664 510 A2

containing this rule object. This MTO pointer can be later used to access the method Enum of the IMultitype
interface in order to access the aggregated interfaces and objects. The method Initis invoked by AddRule when
a rule object is added to the list of rule objects. The IUnknown interface provides an implementation of Quer-
yinterface that knows how to select a combining rule object from the list of rule objects. As shown,
MyQl::Queryinterface provides the identical functionality to that provided by MTO::Querylnterface. However,
the implementation differs in that MyQl::Querylnterface uses the method Enum to find a combining rule in-
stead of searching the list itself. One skilled in the art would recognize that MTO::QuerylInterface could have
been implemented identically.

An example of using a MyQl rule object is shown in the method MTO::MTO. When the multitype object is
instantiated, the constructor MTO::MTO is invoked. This constructor creates a new rule cbject for the IlUnknown
interface using the MyQlI class definition and then adds this rule object to the list of rule objects using the meth-
od AddRule. One skilled in the art will recognize that adding a rule object implementing a selection rule can
really be done at any time.

Code Table 14

class IPrint: public [lUnknown
{ virtual boolean Print (void **ppobj) = 0;
}
class myPrintRule: public [lUnknown
private:
void myPrintRule: m_R(this), m_P(this) {/*any other initialization code*/ }

class R: public TRule

{
public:
void R(myPrintRule *pmyPrintRule) {m_pMyRule = pmyPrintRule) }
// ... IlUnknown methods are also implemented here which call the controlling
// [Unknown methods for the enclosing object (public methods shown below)
virtual HRESULT Init (IMultitype *pMTO) {m_pMyRule—»m_pMTO = pMTO}
private:
myPrintRule *m_pMyRule;
}; //end of class R definition
friend R;
R m_R;
class P: public [Print
{
public:

void P(myPrintRule *pmyPrintRule) {m_pMyRule = pmyPrintRule) }

/I ... TUnknown methods are also implemented here which call the controlling
// TUnknown methods for the enclosing object (public methods shown below)

virtual void Print (void * pobj) .

// call each aggregated object print routine on each list in order of overriding
// and then normal list and only call print routine from default list if no print
// routine exists on normal list

{ IID_IMultitype *p_iMT;
[1D_IPrint *p_iprint;
int i

42

10

18

25

30

35

&5

EP 0 664 510 A2

p_iMT = m_pMyRule->m_pMTO:;

for (i = 1; p_iMT->Enum(i, IID_IPrint, OVERRIDE_LIST, true, &p_iprint);
i++) p_iprint->Print(pobj);

for (j = 1; p_iMT->Enum(j, IID_IPrint, NORMAL _LIST, true, &p_iprint);
j++) p_print->Print(pobj);

if ((i==1) && (j= =1) && (p_iMT->Enum(1,ITD_IPrint, DEFAULT_LIST,
true, &p_print))) p_print->Print (pobj);

3

}
private:
myPrintRule *m_pMyRule;
|5
friend P,
P m_P;
int m_refcount;
IMultitype *m_pMTO;
public:
virtual HRESULT QueryInterface(REFIID iid, void **ppv)
{ ret = TRUE;
switch (iid) {
case IID_IPrint:
*ppv=&m_P;
AddRef();
break;
case IID_IRule:
*ppv =& m_R;
AddRef();
break;
case [ID_IUnknown:
*ppv = this;
AddRef();
break;
}
retum ret;
}

virtual void AddRef() { m_refcount++;}
vinqal void Release() {if (—~m_refcount == 0) delete this;}

1M

Code Table 14 shows C++ pseudocode for an example of using a muititype abject and a rule object ta pro-
vide overriding behavior for a set of aggregated objects or Interfaces. Typlcally, when a set of objects of dif-
ferent types Is aggregated, each object provides its own print method which knows how to print the object. Code
Table 14 shows C++ pseudocods for a preferred class definition of a rule object that provides a combination
rule for the IPrint interface. The provided IPrintinterface includes a method Print, which invokes the print meth-
od of each enclosed object or interface in an enclosing multitype object.

Class myPrintRule provides an implementation for at least two interfaces, as do all rule objects: in this
case, IRule and |Print. The IRule interface provided by class myPrintRule is functionally identically to class
MyQl, already discussed with reference to Code Table 13. The IPrint interface simply provides a combining

43

10

18

20

25

30

35

45

55

EP 0 664 510 A2

rule that enumerates through the three lists of aggregated objects in a multitype object searching for other
IPrint interfaces and invoking their Print routines when found. As discussed with reference to Code Table 13,
after this rule object is added to the list of rule objects in a multitype abject, the method Queryinterface of the
controlling lUnknown of the multitype object will preferably return a pointer to this combining rule IPrint inter-
face when a client application invokes Queryinterface requesting liD_IPrint on the aggregated object. As a re-
sult, when the client application invokes the method Print, the method Print implemented by this rule object
will instead by invoked to ensure that the aggregated object prints its components correctly.

Code Table 15

pPrintRule = new(myPrintRule); // make a IPrint interface combining rule
pPrintRule->Querylnterface(I1D_[Rule, prule);
p_MTO->Querylnterface(1ID_[Multitype, p_MT);

p_MT->AddRule(ITD_1Print, prule); // add it to the Multitype object

Code Table 15 shows a C++ pseudocode sequence of calls that installs the rule object defined in Code
Table 14. First, a new instance of the class myPrintRule rule object is created. Second, the IRule interface of
the new rule object is retrieved for later use. Third, after obtaining from somewhere a pointer to a multitype
object (p_MTO), the IMultitype interface of the multitype object is retrieved. Finally, the method AddRule of
this retrieved IMultitype interface is invoked passing it the interface identifier for the new rule object (IID_|Print)
and a pointer to the IRule interface of the new rule abject.

In a preferred embodiment, an aggregated object is persistently stored using the same mechanism illu-
strated for printing. Specifically, a multitype object provides a combination rule object for the IPersistFile in-
terface or for any other interface responsible for saving and retrieving objects. (The IPersistFile interface pro-
vides methods for saving and loading objects.) In this manner, the multitype object is able to override the saving
functionality of the enclosed objects and interfaces to ensure that the whole aggregated object is saved. The
combination rule preferably savaes any data structures that the multitype abject needs first and then invokes
the method Save on each of the enclosed IPersistFile interfaces or objects. Thus, in order to participate in
saving the aggregate object, a client pragram adds the IPersistFile interface of an object to be sndosed, or
encloses the entire object. No separate storage is needed in a separate file: the multitype object can store its
own data in an analogous manner to how object data is stored within a single file.

In an alternate embodiment that implements only one list of aggregated interfaces or objects and rules
(instead of three lists plus the list of rule objects), the multitype object needs no storage of its awn. No storage
aside from that used by the aggregated objects is necessary because the multitype object can recreate the
single list by examining the ordering and indexing information of the aggregated objects in the hierarchical per-
sistent storage structure. However, a multitype object that implements multiple interface lists typically needs
to stare information ta distinguish which interface instances are pointed to by which list.

The present embodiment of the current invention assumes that when the controlling IUnknown::Queryln-
terface method invokes the Querylnterface methods of the enclosed objects such invocation is performed syn-
chronously. That is, the enclosed object Queryinterface method returns before the contralling 1Un-
known::Querylinterface method invokes the next enclosed cobject Querylnterface method. In an alternate em-
bodiment, the controlling IUnknown::Queryinterface method calls the enclosed object Queryinterface meth-
ods asynchronously, not waiting for their return. Instead, standard interprocess communication mechanisms
are used to inform the controlling routine when the enclosed object method has completed. Such an embodi-
ment is useful in a networking or multiprocessor enviranment.

A typical application of the present invention for dynamic aggregatlon is for a user to combine instances
of objects into a more powerful object using a program that has been developed with knowledge of dynamic
aggregation. For example, suppose, using the spreadsheet interface example presented in the background
section, that a software vendor ships a spreadsheet product from which a user can create aggregatable spread-
sheet objects that only support the IBasic interface for basic manipulation of a spreadsheet. (That is, using
this product, a user can create instances of the IBasic interface, which are spreadsheet objects.) Further sup-
pose that another software vendor ships a database product from which a user can create aggregatable da-
tabase query objects. These aggregatable database query objects support the IDatabaseQuery interface,
which for example includes a method DoQuery to run a query and a method DefineQuery to enable a user a
specify a query. When attached ta other objects that can serve as input data, these database query objects

44

10

185

20

25

30

35

55

EP 0 664 510 A2

can be invoked to query the attached input data. Also suppose that resident on the computer system is a pro-
gram, for example a file manager, that manages objects and that knows how to create multitype objects and
aggregate other objects and interfaces together. To do this task, the file manager knows how to create a mul-
titype object that provides an implementation of the IMultitype interface.

Figure 12 is a pictorial representation of a spreadsheet object and a database query object, which can be
aggregated together to create an attached database query object. To create a more powerful object that can
perform a specified query on a specified database (the attached database query object 1205), the user first
creates, using the spreadsheet product, an instance of a spreadsheet object 1201, which the user wants to
use as input data. Then, the user creates an instance of a database query object 1202 using the database
product. The user then invokes the method DefineQuery of the IDatabaseQuery interface by pressing the de-
fine button 1204 and enters text for the database query using a database language; for example, the SQL lan-
guage. Next, the user invokes the file manager 1208. Using the file manager, the user selects the spreadsheet
object 1201 and the database query object 1202 and requests that the file manager 1208 aggregate them.
The user might indicate this request, for example, by dragging and dropping the display representation of the
spreadsheet object 1201 onto the data input port 1203 of the display representation of the database query ob-
ject 1202. Inresponse to the user’s request, the file manager 1208 instantiates a new attached database query
object 1205 by instantiating an enclosing multitype object and invoking the method IMultitype::AddObject for
both the spreadsheset object 1201 and the database query object 1202. The file manager 1208 also passes to
both the spreadsheet object 1201 and the database query object 1202 a pointer to the controlling IlUnknown
interface of the newly instantiated multitype object. The user can then invoke the attached database query
object by selecting the "Go" button 1206, to perform the specified query on the attached spreadsheet data.

One skilled in the art would recognize that once an object is aggregated, it is subject to the rules of the
enclosing object. Thus, the behavior of spreadsheet object 1201 and the database query object ance enclosed
may change.

Figure 13 is a block diagram of an aggregated attached database query object. The aggregated object
1304 corresponds to the attached database query object described with reference to Figure 12. The aggre-
gated object 1304 comprises a multitype object 1301, a spreadsheet object 1302, and a database query object
1303. The multitype object 1301 is created, as describaed above, in response to the user request to aggregate
spreadshest object 1302 and database query object 1303. During the process of aggregation, the multitype
object creates pointers 1305 and 1306 to the aggregated objects and passes to the objects to be aggregated
a pointer to the controlling I[Unknown interface. Later, when the user presses the "Go" button (1206 in Figure
12), the controlling [Unknown interface of the multitype cbject 1307 is invoked to locate and invoke the method
DoQuery of the IDatabaseQuery interface of the database query object 1303 using the above-described em-
badiments. The method DoQuery can then query far and invoke a (known) desired method of the spreadsheet
object 1302 by searching for a (known) desired interface identifier of the spreadsheet object 1302 using the
method Querylinterface. (To recall, the invocation of the methad Querylnterface will get forwarded to method
Queryinterface of the controlling lUnknown 1307 the multitype object 1301, which will locate the desired in-
terface If it exIsts.) Thus, the database query object 1303 Is able to Invoke the mathods of the spreadsheet
object 1302 without having access to the compile time definitions of the interfaces of the spreadsheet object
1302 as long as it knows the name (and parameters) of the methad and the interface identifier.

Although the present Inventlon has been described In terms of a prefered embodiment, It Is not Intended
that the invention be limited to this embodiment. Madifications within the spirit of the invention will be apparent
to those skilled in the art. The scope of the present invention is defined by the claims which follow.

Claims

1. Amethod in a computer system for adding an interface to an object, the interface implemented by an object

belng able to be enclosed Into an enclosing object, the method comprising the steps of:

creating an instance of the enclosing object, the enclosing object having an add interface function
member for adding an interface to the enclosing object and a query function member for retrieving a ref-
erence to an added interface;

creating an instance of an object to be enclosed within the enclosing object, passing a reference
to the enclosing object, the object to be enclosed having an interface and having a query function member
for retrieving a reference to the interface; and

invoking the add interface function member of the endosing object, passing a reference to the ob-
ject to be enclosed, thereby enclosing the object and adding the interface of the enclosed object to the
enclosing object, whereby when the query function member of the enclosing object is invoked, the query

45

10

15

20

25

30

35

55

10.

.

12.

13.

14.

EP 0 664 510 A2

function member of the enclosing object returns a reference to the added interface of the enclosed object.

The method of claim 1, wherein the invocation of the query function member of the enclosing object is
performed asynchronously.

The method of claim 1, wherein the invocation of the query function member of the enclosing object is
performed synchronously.

The method of claim 1, wherein the enclasing object provides a default interface.

The method of claim 1, wherein the enclosing object provides an interface that overrides the added in-
terface of the enclosed object.

The method of daim 1, whersin the enclosing object has no knowledge of the interfaces exposed by the
enclosed object.

The method of claim 1, further comprising the steps of:

creating an instance of a second object to be enclosed within the enclosing object, whereby the
second object is passed a reference to the enclosing object, the second object having an exposed inter-
face; and

invoking the add interface function member of the enclosing object, wherein the exposed interface
of the second object is added to the enclosing object, thereby enclosing the second object, whereby when
the query function member of the enclosed first object is invoked, the query function member of the en-
closed first object returns a reference to the added exposed interface of the enclosed second object.

The msthad of dlaim 7, wherein the exposed interface of the enclosed second object averrides an interface
of the enclosed first object.

The method of claim 7, wherein the exposed interface of the enclosed second object invokes an interface
of the enclosed first object.

The method of claim 7, wherein the exposed interface of the enclosed second object is a default interface.

The method of claim 7, the enclosed first object containing a pointer to the enclosing object, the second
object having a query function member for retrieving a reference to the exposed interface of the second
object, and further including the steps of:

first, invoking the query function member of the enclosed first object requesting an exposed inter-
face of the second object;)

second, retrieving a reference to the query function member of the enclosing object through the
pointer to the enclosing object contained by the enclosed first object;

third, invoking the query function member of the enclosing object, passing the requested interface;

fourth, from the query function member of the enclosing object, invoking the query function mem-
ber of the enclosed second object, passing the requested interface; and

fifth, from the query function member of the enclosed second object, returning a reference to the
requested interface.

The method of claim 7, the enclosing object having an add rule function member for adding rules for de-
termining to which added interface to retrieve a reference, and further comprising the step of invoking
the add rule function member of the enclosing object to add a rule for determining to which added interface
to retrieve a reference, whereby when the query function member of the enclosing object is invoked, the
query function member determines from the added rule to which added interface to return a reference.

The methed of claim 1, the computer system having a device for persistent storage, further including the
steps of:

after enclosing an object into the enclosing object, thereby creating an aggregate object, storing
the aggregate object on the persistent storage device; and

subsequently loading the stored aggregate object from the persistent storage device.

A method in a computer system for changing the behavior of an object, the method comprising the steps
of:

45

10

15

20

25

30

35

55

15.

16.

17.

18.

19.

EP 0 664 510 A2

creating an instance of an enclosing object, the enclosing object having a query function member
for retrieving a reference to an interface instance and an add rule function member for adding rules for
determining to which interface instance to retrieve a reference;

adding a plurality of interface instances to the enclosing object; and

invoking the add rule function member of the enclosing cbject to add a determination rule for de-
termining to which interface instance to retrieve a reference.

The method of claim 14, the method being language independent.

The method of claim 14, further including the step of invoking the query function member of the enclosing
object to retrieve a reference to a requested interface, whereby the query function member of the enclos-
ing object determines using the added rule to which interface instance to return a reference.

The method of claim 14, wherein the added determination rule combines the retrieval of a plurality of ref-
erences to interface instances.

The method of claim 14, wherein the added determination rule Is implemented by arule object and whereln
the step of invoking the add rule function member further includes the step of instantiating the rule object.

The method of claim 14, further comprising the steps of:

invoking the add rule function member of the enclosing object to add a second determination rule
for determining to which interface instance to retrieve a reference; and

creating a selecting rule for selecting which determination rule to use far determining to which in-
terface instance to retrieve areference, whereby when the query function member of the enclosing object
is invoked, the query function member uses the selecting rule to select between the first determination
rule and the second determination rule, wherein the selected determination rule determines to which in-
terface instance to retrieve a reference.

A computer system for adding an interface to an object, the system comprising:

an enclosing object having an add interface function member for adding an interface to the enclos-
ing object and a query function member for retrieving a reference to an added interface; and

an object to be enclosed with the enclosing object, the object to be enclosed having an interface
and a query function member for retrieving a reference to the interface, wherein the object is enclosed
and the interface added by invoking the add interface function member of the enclosing object passing
it a reference fo the object to be enclosed, and whereby when the query interface function member of the
enclosing object is invoked after the object is enclosed, the query interface function member returns a
refarence to the added interface of the enclased abjact.

47

EP 0 664 510 A2

S0l

01

1]

N Poylsiy

e INE

0 PouILB

} B4

. c0l

1}

.
i <

- siaquiapy

11)°

ejeq

_ alqeL

uoKouN4 [enjIA

aInponys eleq

aouejsuy|

EP 0 664 510 A2

144

Z ‘b4

(m1eQ)%

1144

1 ¥4

Lie

A

(asesjay)?p

N (JodpPY)S

(goepawuilionn)p

(4 XA
umouyun| mv

—(Osseqejeq)
—(oiseg|

80¢

{(19D189)%

5] 74

(sjewso4)g

(1p3)3

e
ad
te (ENWiO4)Rg
)
(e

(@1d)g

(ases|ay)9

Gle

vie

9 4

L+ (J3dPPY)?

EECIon

] ndja

{04

A

[4 ¥4

%4

S0¢

602

802

L02

. ndia

£0¢

Junoojai

e (0SE3lON)9

Le aseqejeq]id

o (ayppy)?

-

oiseg|d

(goepajlisnd)e

¢0¢

ndia

L0

EP 0 664 510 A2

c0e

umowun|

rd

umousun|

1S O a
mommu[,
g

£l

voe

Fom.\

umounun|
Buyjosuon

€S

EP 0 664 510 A2

b

>
Ty

3

Lo 3SEQIRY:Q%

aoepalu| e JSHPPY-:(%®
a:a ases|ay:q 19YPPY:Q Kianpy::q [€—~__|soepauuent:ae
1184 Sy 1434 iy veoy
1/ .
*
Le asesjay: D9
aoepaly| * 134pPpY..O®
210 ases|ay D J34PPY:ID Aianp.: o€~ _aoessuilienD:Dg JUNGORI1S
(434 434 1134 60 1%0)7 BnONd U S
Led wig::L S
— adiaiqils
Lo 3SEDIRY:LS® 1Sd WD S
aouejsu| aoeuau| e JOUPPY-LS% M AdIAILS
jeai:iLg 1SS osesRy LS 19xPPY:LS A1enDy: | i€~ [eoepaikenii 5 NAATLS
80 0¥ g0y Govy 14414 Al 4 10t

51

EP 0 664 510 A2

S 'bi4 :
L+ 0SEd)Y (%
aoepeu| e JSHPPVIQR ¢s
a:=q asedeN:q 194PPY:Q AianD::q [~__[goepsuifenDias
9y Glb ply 141 4 veEOY 618
/\. ases|ay 09
_ eoepay| [*__$9UpPY--O% uNoojalI LS
30 aseq|ay:o 94PPY:0 Aanp::p[€—_[goepeplonD. g onound. W g
ciy Ly Oy 60% 0} 4 bsd wgnLge
// - diAglLS
L+ asesjeyiS® 1Sd Win: g
8ouelsu) aoBpa) s J8HPPY11S? e adiionig
8jeald::L g IS71S 9seddY: LS JodPPY LS KianD::) Sre—_| |soeysen 1 Sgle—-» ndiazs
80¥ L0¥ 90V Sov 1404 0P Loy
/ m
/\. asesjey gy
aveualu| e J3HPPY..8%
g9:4q oses|oy. g $9YyPPY:d Kendy::g —_[goesepkieny g3
11§ 81g G1S ¥lS ¥0<
/ : _ Zoqund Wi gge
i Bk [Sqund W gge
aoepay| e J13UPPY-VR unoojel Wiigs
vy asEsiaN Y J9uPPYY Asenp: v€&—_{eeulonDive lenoynd” Wiggel
cis [43]) LS 0Ls £0S ted WigeSe
/ o diaigiies
Le aseD)ay: £S% cod Wiy gS
souejsuy soepa) L. JouPPY:ESY - Jdiayiies
CEETORS £S:€S S DY jouPPY-:ES AienD Sl koeiauikeno sy s
609 805 205 908 S0S 20S L0S

TN A

52

EP 0 664 510 A2

v9 ‘b4

Jouppy<lsinoyund w:g

909

19HPPY:ID

soepsjuplianD —iainoyjund Wi Lg

S09

aoepsullany::n

++ JUNOOJRIILS

¥09

$9UPPY::UmowuN|

J2UPPY: - umouun|

a9=ndd,
9%9=Add,

siyi=add, .umouwuni—an 1€

= Junod}al
-a_ai y

0 ail

€09 QUNtQEEO:GnESo:v_CD_

209 19)noyund” W

—() °

109 k

umouxun) &

IS

EP 0 664 510 A2

JUPPYIBINOYUNd W:: | g
809 $94PPY:D

soepaupinDenOyund W:: | Sl

609 aoepgulianD)

JoHpPPY<lanoyund w::gg
819 © JoyPPY:g

soepsuAIsND—aInONUnd” W:ES

.19 afeysujlianty..g

44 UN00JRILS
$09 JOUPPY: uMoLyUN)

J9HPPY::umouNun)
Q3=ndd, a_an
O'g=ndd, :0_an .
Siyi=Add,:umouyuni—qll

£09 @depejujlianpiumouNun] Zo9 seInoxyund w

Junooyal

——

194pPPY<saInoyund Wi gy

109~ umouyun (ye—— 15 919 JoUPPY:Y
+4 JunodjalIgs soepRuAND—InOyund WS
¥19 J5PPY: UMOUNUN) GH9 soepejulAiBND Ty
JoMPPY::UMOUNUN)
{add'p11) acepsujliany , e
< | Sund” w=Add, 0 an 619 LSyund w 119 wnoojal
g3=ndd, g an
v3=ndd, Y ai
siy)=Add, :umouxun—an [«
€19 @adepgukianD: umouyun) 219 Janoyund w
019

umousun| O

€S

EP 0 664 510 A2

v. ‘b4

AV])
\/NE
7
(o) (O— R !
(umouyuni) () e
v uonejuawa|dw
(ainy)) oL —
% o JT\\.
NETLT REDT BT T g
Lo J OLW

Buy

umouun)|
jonuo) O

—(Ow

55

EP 0 664 510 A2

g/ ‘b1

o.

OO

LS
— umouunI~all
0L
umouyun| 1172
7
JNON
Z /
mVl
502 | &/
0bL .l:oo_.scmEm_aE_
. »
|) "
AIT_F_._AIT._F_ vl
102 / umouyun| Ol

Buljjonuon O

O

EP 0 664 510 A2

2. ‘B4

80

| -»

Zs

102

UMoUNUN|

G0L

LS
|.
$0.
umouNun| 7 4
umouwyun| Al qoﬁ Jmo\.
£0L |_»
0L
uoljejuawajdw

10L

Ol

O umouun|
Bujjjonuo)

O

57

EP 0 664 510 A2

8 ‘b14

1

Le aSEO@RY: 4P

asepau} o JOHPPY..d?
did juud:d SSEdzy . .d }9upPPYd AanD::d | oepauilondide
£¢8 cc8 1¢8 028 6L8 08

e 1180389::g%

e JEWLOL:IER

2303 B2 jewod::g enuLo ;g B e m_:c:ou_mmm.w

818 18 ol8 18 vi8 > Mﬂwumw

o mmmm_m,mum_m

> Jayppvigs

soepoulent): g

eoepe| 208
a9 aseapy:q jouppy:g fenpig
£l8 ZlB 118 0L8

_ Opnd_ UE}S
_ 1sd w:d:1Ls
ore d Y\N\="wdmams
Lo 9SBIIOY: 1SR _ 1Sd w:gils
aouEjsuy| aoepajU| L jeuppyiiss\ 8 W [a ndngns
8)eainlLg 18IS OSESRYLS JUPPY.L S, Ew:O”;wA/..ﬁmﬁ_»gc_;w.mAl\\\ll ndu:yg

608 808 208 908 gos 208 108

EP 0 664 510 A2

MTO::MT::AddObject
(list, headoflist, punkobj)

Allocate new — 901
list item '
Set item to point
to object - points | — 902
to IlUnknown
interface
|
803 804 905
List = Y Want to Y Insert at h; of
NORMAL ut at head of
LIST? P ety NORMAL LIST | ™)
N N ,— 906
Insert at tail of
NORMAL LIST [
907 908 — 909
List = v Want to
DEFAULT put at head of Y | Insertathead of |
LIST? list? DEFAULT LIST
910
N N yaii
Insert at tail of
DEFAULT LIST [
911 912 913
List = Want to
Y Y Insert at head of
OVERRIDE put at head of OVERRIDE LIST [
LIST? list?
N N Y o14
Insert at tail of
OVERRIDE LIST [™

59

EP 0 664 510 A2

MTO::QueryInterface (iid, ppv)

— 1002

Set ppv to point
to nested instance
of IMultitype

/_1004

Set ppv to point
to this instance
of IlUnknown

Set list to next list
in set (override,
normal, defauit}

¢ L~ 1006

Set pitem to the
front of the list

Return true

Element
points to the

Element
points to an
IUnk;wwn

Call Query-
Interface of object
pointed to by pitem

— 1012

Increment pitem
to next element

Success-
fully found the

— 1014

Set ppv to point
to the requested
interface

Retum -
successful

requested
iid?

Return
successful

in the list

Fig. 10

EP 0 664 510 A2

=S\

L ud:d®

aveR /nx ases|ay ' d9
uud | || esesjay JouppY Ksanp © JouppY-d® L1 ‘B4
did d id d “d e goepelisnD):de
ol \|||+’
/‘ 180199::8%8
9010 BWIO gInuuo | all R e °
el | Pl i Y|, \ sz
- A/; TERCT P
/‘ R (4
agepau} - 95edpy.gr oLl
asesPy $84pPpY fianp - Jeyppv:gYg
q9:8 g g | watmE_bm:cnmwA aud
€08 noyund w:ig] Y- iqod
. 1sd wid:lsd pil
/x aseaeg 159 | | MONdUIS |\ eoll
80UE)SY| aoepaju) L 1ouPPY IS8 1sd wig:1s
ajeas) aseapy J9YPPY KAianp soepekieny| nNamgLs N
18 1SS LS LS 18 Ar\\\ queel, b ndiacts xaud /]
208 108 T [qod
pI!
S 2011
P ———_PoeouipoV-1INE
L. 3SE9I9Y: LINT
SosHa Soewsul & J34PPY:LINE
PPY ases|ay jouppPY enp soepaukiany) y
LAZLW ELN LN a3 SN et LIV - ptoud SO
GOkl nopnd W
; //r 95B9)13Y ' O1 T _ opud W INCOL
BauBjsuy| soepal | N\ L suppv-olws| \N) L ndiIncoIn
ajearn Ol ases|ey Jo4ppY -ienp soepeUIKIanD) C RGN OLN
SOLW QLN “OLN QLW “OLW le—1 e E_m_A{\S:

61

EP 0 664 510 A2

ZL ‘b4

Inolienp
BlegAN
8
09 _ ”
a0¢t ”
eleqAn | RERERKS :
soz1” 1oz1”
AanDAW
el A
14140 €ocl
zozL”

"HIAOVYNYIW 3114

80z
MOGNIM AV1dSIO ¥IOVYNYIN 314

62

EP 0 664 510 A2

gL b4

1
IIO KAsnpaseqejeq| \O oisegq|
£0¢g _,\ (414 \
umouun| umouNun|
90€} JM_N\ GOEL
b0eL~ Loel]
20gL—"

umouyuny () () sdhmnp

	2001-11-28 Foreign Reference

